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Abstract:  
In this paper, analyzed the efficiency of algorithms of blind pulse signal extraction in a 

background of impulse noise based on the maximization of the absolute value of the kurtosis. 

Synthesized blind separation algorithms with fixed point and it is considered in combination with the 

gradient. The convergence of these algorithms is shown for zero and nonzero initial conditions. A 

lemma and two theorems are formulated Allowing to prove the blind allocation of the signal and to 

determine the number of decisions with regard to signal extraction. Modeling established that the fixed 

point algorithm based on the maximization of the absolute kurtosis value is more efficient and allows 

to separate the pulse desire signal with the signal-to-noise ratio of 30 dB more than the gradient 

algorithm with the same objective function. Computer modeling of AbsoKurt and AbsoKurtFP 

algorithms Carried out in Simulink using Matlab programing. 
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Introduction 
The problem of blind signal extraction is solved as an estimation of one or 

several interesting signals with special statistical properties, and the remaining (noise) 

signals should be ignored. This problem can be formulated differently, as the 

identification of the corresponding vector hj of the mixing matrix H, and their 

inversions wj, which are the rows of the separating matrix W, assuming only the 

statistical independence of the primary sources and the linear independence of the 

columns of the matrix H (Cichocki and S.Amari, 2002;Yong Xiang et.al.,2015). Blind 

signal Extraction has a wide range of applications for the separation of digital streams 

on the background of impulse noise in multi-antenna systems such as (MIMO)( Rémi 

et.al.,2010; Sriyananda et.al.,2016). 

As a rule, blind allocation of signals occurs through a multistage artificial neural 

network (ANN). The number of cascades is determined by the number of useful 

signals allocated. If a mixture of one signal and one interference acts in the channel, 

then it is sufficient to apply a single-stage neural network (Fig. 1). 
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Fig. 1. Single-stage neural network 

 

Suppose that at the inputs of the neural network are mixing the signal and the 

noise      and      , received by the receiving, detecting device (antennas). Since 

This procedure must be performed before the Signal extraction in order of the mixing 

matrix H to be orthogonal. Then the estimate of     at the output of the ANN (see 

Figure 1) can be expressed as: 

       
     ∑        

 
                                                           (1) 

 

If we assume that the signal and the noise are mutually independent and have 

specific statistical properties (for example, non-Gaussian), in this case to separate the 

desired signal     Kurtosis maximization criterion  is used (Cichocki and Amari, 

2002). 

We can observe that gradient algorithm of the Absokurt type (based on the 

maximization of the absolute kurtosis) (Hyvarinen et.al., 2001), KuicNet (based on 

the maximization of the normalized Kurtosis) (Douglas et.al.,1998) and Fixed Point 

(FP) - FastICA type algorithm (based on the maximization of the normal kurtosis) 

(Hyvarinen et.al.,2001). Modeling these algorithms performed in order to separate: 

1)  Gauss-Markov process with a certain bandwidth in the background of non-

Gaussian noise (continuous narrow-band, continuous broadband and pulse 

broadband), 

2)  Pulse processing with a Poisson distribution of different intensities on the 

background of wideband Gaussian noise. 
 

The simulation results revealed the following weaknesses in the algorithms 

used. In the FastICA algorithm, the initial conditions and small value kurtosis of the 

extracted process greatly slow down convergence, and if the process has a negative 

kurtosis, then FastICA generally ceases to function. In turn, the KuicNet algorithm 

requires a priori data on the kurtosis sign. 

The best in practical terms are based on the maximization algorithm absolute 

kurtosis (AbsoKurt), not only invariant to the sign, but also to the absolute value of 

the kurtosis. This algorithm can be used even under more difficult conditions, for 

example, when a pulse signal is allocated on the background of impulse noise. The 

algorithm is the following (Hyvarinen et.al.,2001): 
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Where   ( ̂ ( ))   Kurtosis of the allocated signal. 

However, a disadvantage of gradient algorithms is the need to select the 

coefficient μ, which affects the rate of convergence. 
 

1. Statement of the Problem 

It is necessary to synthesize the FP algorithm based on the maximization of the 

absolute value of the kurtosis, which has all the advantages of the AbsoKurt algorithm 

(call it AbsoKurtFP), but does not use the μ coefficient. 

For this we consider the functional: 
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Taking into account the functional (3), we find the derivative of the Lagrange 

function with respect to w1: 
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Where  * +   Averaging operator;     * +  Sign function;    Lagrange 

multiplier. 

Let the mixing matrix H after orthogonalization have the following form: 

 

  [√1   
   

 √1    
]                                                                 (5) 

 

Where   and √1        The standard deviation of random processes in 

mixing channels (k < 1). 

Then from (4) for the positive Lagrange multiplier    
  
  

2
⁄  There are two 

stationary points: 
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Both stationary points are saddle points, since the Hessian (the determinant of 

the Hesse matrix) is negative ( Aramanovich, 1965), and they are global maxima, 

since Satisfy the Kuhn–Tucker conditions (Roberto et.al.,2012): 
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2. Blind signal extraction by a neural network 

Thus, for the functional (3), the number of global maxima is equal to twice the 

number of non-Gaussian independent processes in the mixture. 

We generalize these conclusions in several theorems and the lemma and proof. 

that it is possible to separate a pulsed process acting in the background of impulse 

noise, that is, when the processes in the mixture have only a non-Gaussian 

distribution. 
 

Lemma. When imposing a restriction on the norm of the weighting factor 

‖  ‖
  1 the dispersion of the signal at the output of the ANN is unity. 

 

Let       A vector of a mixture of processes at the input of a neural network, 

then: 
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Theorem 1. Let the mixing matrix  H be orthogonal, i.e.        , and all m 

signals in the mixture are independent, then all solutions w1 with respect to the 

maximization of the kurtosis with restriction ‖  ‖
  1  can express       , 

where    A vector of dimension m having only one unit element with position 

number i equal to the number of the allocated signal in the mixture. 
 

Proof. 

We write the Lagrange equation for the functional    (   )  
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  1)  which derivative with 

respect to w is equal to: 
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Where     Allocated useful signal with kurtosis   
  . 

Equating the derivative to zero, we find the vector    taking into account its 

normalization: 
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Represent the vector         , Where    is the vector of mixed independent 

processes with unit variance and zero mathematical expectation, and substituting it 

into (11), Assuming that the estimate of     at the output is equal to   : 
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Where   
     The 4th order moment of the signal      

Taking into account Lemma 1, 4th order moment of the allocated signal 
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Then (12) can be written: 

 

     (    1⏟
           

   )

 

,                                                                   (13) 

 

Which was to be proved. 

Theorem 1 implies that the number of solutions   with respect to maximizing 

kurtosis is equal to 2m, where m - Number of non-Gaussian processes in the mixture. 

Theorem 2. If the mixing matrix H is orthogonal and all the signals in the 

mixture are independent, and the vector    is the solution with respect to the 

maximization of the kurtosis, then the selection of the signal at the output of the 

neural network, taking into account the limitations ‖  ‖
  1 will accurate within a 

sign. 
 

Proof. 

Using Theorem 1, we prove the statement by writing the expression for the 

signal at the output of the neural network: 
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Where    (                    )
    The one in the vector   standing at the 

position with the number i equal to the number of the signal extracted. 

Therefore, if the signal and the noise are non-Gaussian, then the number of 

maxima increases by a factor of 2, compared with the extraction non-Gaussian 

process (compensation) on the background of the Gaussian. 
 

3. Synthesis Algorithm AbsoKurtFP 

Will use (as in the AbsoKurt algorithm) the function (3), which gradient, taking 

into account the normalization of the weighting factor, is equal to: 
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Then the algorithm that maximizes the absolute kurtosis can be represented as 

follows: 
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A block diagram illustrating the implementation of the algorithm (16) is shown 

in Fig. 2. 
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Fig. 2. Structural diagram illustrating the operation of the AbsoKurtFP 

algorithm 

Let us prove and compare the convergence of the algorithms AbsoKurt and 

AbsoKurtFP for the separation of a pulse signal in the background of impulse noise 

and show the influence of the initial conditions on the rate of convergence. 
 

4. Convergence of the AbsoKurtFP algorithm 

We expand the gradient of the functional in a Taylor series to close of the 

solution   
   corresponding to the maximum of the function: 
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Where     Hesse Matrix 

Using the rule of finding the weight coefficients in (Hyvarinen et.al., 2001), 

taking into account expression (16), we obtain: 
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The solution of the Lagrange equation with maximization of the functional 

 (  ) yields two Lagrange multipliers   
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When allocating    and    Hesse matrices expresse: 
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Let the initial conditions - zero, then: 
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The vector converges in one iteration to the true value accurate within a sign, 

which does not contradict Theorems 1 and 2. 

 Let us assume the initial conditions (  )   Non-zero and    ( )  (     1)
   

 Changing of the error vector module   ( )    5|  ( )    
 | From iteration to 

iteration, found in an iterative way, is shown in Fig. 3. 

 
Fig. 3. The dependence of the error vector module at the allocation algorithm 

AbsoKurtFP processes     (continuous) and     (discontinuous with circles) from 

the iteration number at         (red),         (blue),         (black) with 

(  ) (   ) 
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Convergence is accomplished in 5 iterations and is not significantly dependent 

on other parameters(  
        )  At the same time, a slight difference of the curves 

due to the different on the location on the circle value of the vector   
   ( for various 

signals), and its nearness to the initial conditions. 
 

5. Convergence of the Algorithm AbsoKurt 

We write the vector of weight coefficients taking into account (16) and (17): 
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Where    is the identity matrix. 

Under zero initial conditions, the convergence to the optimal solution accurate 

within a sign occurs in one step: 
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Under other initial conditions, for example   ( )  (     1)
    iteratively 

represent the dependence of the modulus of the error vector at the iteration number 

(Fig.4).When constructing the curves, the choice of the parameter μ = 0.01 

implemented at random, Since With the chosen mathematical model, any values of μ 

do not lead to divergence of the algorithm. 

 
Fig. 4. The dependence of the error vector module at the allocation algorithm 

AbsoKurtFP processes     (continuous) and     (discontinuous with circles) from 

the iteration number at         (red),         (blue),         (black); kurtosis 

are equal to 10;        with (  ) (   ) 
 

Let us explain the convergence in Fig. 5. When allocating the process    

parameter         corresponds to the location of the solution with respect to the 

vector    is near to the initial conditions, so the error vector at zero iteration is 

minimal, at the same time, for    parameter          is spaced by a large distance, 
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which leads to a large initial error. However, the rate of convergence for the second 

process is higher due to the fact that the selection is produced accurately within the 

sign and the solution converges to a negative value of the vector that is closer to the 

selected initial conditions (for the first process all Conversely). Similar conclusions 

can also be expressed for the value       1  
 

 

 

 

 

 

 

 

  

 

Fig. 5. Diagram of the arrangements of optimal solutions depending on the 

parameter   and the signal    

When the parameter k is close to 1
√2
⁄  , then if the kurtosis of the Hesse 

matrices is equal for both signals, they will also be equal, and the rate of convergence 

will be the same. 

Thus, for both algorithms, the fastest convergence is established under zero 

initial conditions (per 1 step). For non-zero initial vectors, the rate of convergence 

decreases, in this case, in comparison with the algorithm AbsoKurt, the algorithm 

AbsoKurtFP several times faster converges to the optimal solution. The rate of 

convergence will depend on the location on the circle value of the optimal vector    
  

(for different signals), and for the algorithm AbsoKurt in addition to the product the 

parameters    
    

 

6. Simulation 

Computer modeling of AbsoKurt and AbsoKurtFP algorithms Carried out in 

Simulink (fig. 6).The implementation of the AbsoKurtFP algorithm is shown in 

Fig. 7, and the algorithm AbsoKurt - in fig. 8. 
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Fig. 6. Simulink of realizing the extraction of a pulse signal on the background of 

impulse noise. 

 

 
 

Fig. 7. The algorithm AbsoKurtFP 

 

 

 
 

Fig. 8. The algorithm AbsoKurt 

 

The Poisson process with different intensity parameters (different values of  kurtosis, 

respectively) was used as the signal and the noise. Mixtures in two channels after 

whitening can be expressed in vector-matrix form: 
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*
    
    

+  [√1   
   

 √1    
] *
  
  
+                                                                    (24)   

 

The values of k correspond to the signal to noise ratios at the input of  the 

detector:  
 

  0.9 0.8 0.7 0.5 0.3 0.1 
      –4.1 –2.5 –1.1 0.2 1.3 2.5 
      4.1 2.5 1.1 –0.2 –1.3 –2.5 

 

Computer modeling of the convergence process of the AbsoKurt algorithm was 

performed with averaging  {   
    } in order to approximate the proposed model of 

convergence to practical results. In this case, the Hesse matrix is formed by formulas 

(19) and (20) Before the algorithm starts extraction of the impulse signal. 

The results are shown in Fig. 9, 10 confirm the correctness the choice of 

mathematical models of convergence for two algorithms (formulas 18 and 22). 

 

 
 

Fig. 9. Dependence of the modulus of the error vector when the signal is extraction 

by the algorithm AbsoKurt (continuous blue - simulation, dotted  theoretical) And 

AbsoKurtFP (continuous red - simulation, dotted theoretical) from the iteration 

number at k = 0.9; The kurtosis of the signal is   ; The kurtosis of the noise is equal 

to            ; The initial vector (   )  
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Fig. 10. The dependence of the modulus of the error vector when the signal is 

extraction by the algorithm AbsoKurt (continuous blue) and AbsoKurtFP 

(continuous red with circles) from the iteration number for        ; The kurtosis 

of the signal is   ; The kurtosis of the noise is equal to 1; μ = 0.01; The initial vector 

(   )  
 

The results of experiments of separation  pulse signal on the background of impulse 

noise at zero initial conditions are shown in Tables 1 and 2. 

Table 1 Dependences of the signal-to-noise ratio in the output of the ANN (q) at the 

signal-to-noise ratio in the detector by different algorithms blind extraction Poisson process 

(the kurtosis is 10) on the background of the Poisson process (the kurtosis is 0.1); μ = 0.01 

 

  0.9 0.8 0.7 0.5 0.3 0.1 

              43.8 43.8 43.8 43.8 43.8 43.8 

            13.6 13.6 13.6 13.6 13.6 13.6 

 

Table 2 Dependences of the signal-to-noise ratio in the output of the ANN (q) at the 

parameter μ by using the algorithm AbsoKurt to extract the Poisson process (the kurtosis is 

10) on the background of the Poisson process (kurtosis is 0.1) at k = 0.7 

  1    5 1    1    5 1    1    5 1    1    
     13.6 15.9 20.8 22.9 28.3 30.5 35.2 

 

Conclusions 
Analyzing the results of the simulation, we can illustrate the following. 

First, the proposed mathematical models of convergence allowed us to verify 

that the fastest convergence of both AbsoKurt and AbsoKurtFP algorithms is 

observed under zero initial conditions, and also confirmed the results of the theorems 

formulated. The results illustrate the efficiency of both AbsoKurt and AbsoKurtFP 

algorithms for the separation of pulse signal on the background of impulse noise.  

Secondly, the fastest converging and efficient algorithm is the AbsoKurtFP 

algorithm, Which is better than AbsoKurt with respect to the signal-to-noise ratio by 

30 dB. This is explained that the replacement by the algorithm of AbsoKurt the 

procedure of gradient averaging at the current value of the gradient when the pulse 
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signal is separated on the background of the impulse noise reduces the efficiency of 

its operation and in this case it is necessary to decrease the parameter μ, which leads 

to a slowing down of convergence. 

These algorithms are applicable for the separation of digital streams on the 

background of impulse noise in multi-antenna systems such as (MIMO), widely used 

in cellular networks (standard LTE) and wireless (such as Wi-Fi) communications. 
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