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Abstract 

An open-graded friction course (OGFC) is a special type surface layer of traditional Dense Graded 

Hot Mix Asphalts (DGHMA) pavement that is increasingly being used around the world due to its various 

benefits, such as, frictional, safety and environmental, etc. In this research, selective laboratory OGFC 

properties were statistically modeled depends on mix design inputs for two purposes or aims; mix inputs 

significant and prediction the OGFC properties according mix inputs.  Principally, Indirect Tensile 

Strength (ITS), water sensitivity (TSR), and permeability (K) were selected from mechanical, durability, 

and volumetric properties, respectively as an output property; they represent the dependent variables for 

each model. While, fillers as conventional mineral filler or Ordinary Portland Cement (CMF, or OPC), 

binder content (BC), and polymer content (SBS) are represented inputs or the independent variables for 

all models. The generated models offered a vital achievable tool for prediction (e.g., their R² are 0.781, 

0.82  1 and 0.820, respectively, for the mentioned model’s properties), also it helped to scale the significant 

of each independent variable (e.g., filler type significantly affect water sensitivity properties, its 

correlation was 0.752). This study reveals that the statistical modeling is achievable and offers a dynamic 

tool to describe the characteristics and performance of OGFC mixture in term volumetric, mechanical 

and durability properties. 

Keywords: Asphalt concrete; Open Graded Friction Course; Polymer modified asphalt; Statistical 

analysis. 

1. Introduction. 

An open-graded friction course (OGFC) is a special type of asphalt mixtures which characterizes 

by using open-graded aggregate with high quality properties to ensure a mixture with an elevated 

connected air voids (AV) content and a course granular structure that improves high stone-on-stone 

contact. The mixture disintegration and resistance to permanent deformation are provided by stone-on-

stone contact of the course-aggregates fraction. Simultaneously,  the air void skeleton forms by the coarse 

aggregates in a compacted specimens is partially occupied by portion of the fine-aggregate [1]. The 

structure of connected air void in the pavement provides high permeability and reduction in noise, which 

are directly classified as the main advantages provide by these mixtures when used as surface layer. 

Splash and spray reduction help in: reducing wet skidding,  reducing hydroplaning risk , and 

enhancing markings visibility of pavement in wet weather, which are all important advantages of OGFC 

mixtures [2][3]. Moreover, as compared to traditional Dense Graded Hot Mix Asphalts (DGHMA) , the 

noise reduction effectiveness and riding quality are improved in this type of mixture [4][5]. Furthermore, 

cleaner runoff has been informed as one of the advantage of OGFC mixtures [6]. finally, smaller 

concentrations of pollutants related to particulate material and total suspended soils in the runoff gained 

from OGFC were reported by Several studies as compared to the traditional DGHMA [7][8]. 

On the other side, some challenges were informed when using OGFC and porous asphalt (PA) 

mixtures, i.e., mainly are decreased in the structural durability properties of the mixture such as resistance 

to disintegration  and premature voids clogging for the functional durability properties [9][10], relatively 

high construction cost [9][11], use of limited high-quality materials, like  aggregate, reduces structural 

contribution [12], and winter maintenance issues (e.g., black ice formation) [13]. 
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Durability can identify as the resistance of the mixture to subsequent failures and distresses within 

the lifespan of the pavement layers under different loading and weather conditions. Raveling was 

reported as the most important distresses in OGFC in addition to the common distresses such as rutting 

(due to studded tires), reflective cracking, and delamination (which is principally caused by construction 

problems) [14].  

Numerous causes for raveling development like hardening due to high rate of oxidation as a result 

of elevated air voids [15][16], deficiency in compaction [17], insufficient temperature during 

construction [18], and volumetric properties problems (e.g., incorrect calculation of binder content and/or 

air void content or lack of control of these properties during construction ) [19][20]. Numerous numerical 

and experimental models have been recommended to enhance understanding and predicting of raveling 

occurrence. The conclusion of these efforts is that raveling is mostly influenced by the total air voids 

content in the mixture and its binder content [21], however different parameters like the number of cold 

days at the project site and the course aggregate fraction also showed to influence both the appearance 

and magnitude of this distress [22] [23]. 

However, the main purpose of this study is to develop statistical models for predicting some 

volumetric, mechanical, and durability properties according to the variation in some main mix 

parameters. This prediction process could facilitate the understanding of the role of these parameters in 

general mix characteristics. Therefore, this paper will discuss the analysis process for built and validate 

the prospective models.  

2. Research materials and methodology. 

 Raw material. 

Limestone aggregates were supplied from local quarries, which is located to the west of Karbala. 

The physical properties of the aggregates present in Table (1). They were crushed limestone aggregate 

with a degree of crushing exceed 90%. The ASTM D7064 proposed gradation range for OGFC and the 

middle range of each size was selected to prepare the mixes in this research work. Figure (1) displays the 

particle size distribution, which falls within the suggested lower and upper limits in ASTM D7064 

gradation.  

Table 1 Used aggregate physical properties. 

Measured properties Standard (ASTM) Value 

Coarse Aggregate Bulk Specific Gravity (gr/cm3) C127[24] 2.591 

Abrasion Value of Los Angeles (%) C131[25] 21.5 

Fine Aggregate Bulk Specific Gravity (gr/cm3) C127[24] 2.322 

Coarse Aggregate Water Absorption (%) C127[24] 2.22 

Fine Aggregate Water Absorption (%) C127[24] 2.41 

One Side Fractured Particles % D5821[26] 97.0 

Two Sides Fractured Particles % D5821[26] 95.0 
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The type and quantity of filler have an important role on the overall mixture performance and 

have a direct effect on mechanical properties for the OGFC. Two types of fillers were used in this 

research; namely, Ordinary Portland Cement (OPC), and Conventional Mineral Filler (CMF). Table (2) 

identifies physical and chemical properties for used fillers. 

Table 2 The physical and chemical properties of OPC and CMF fillers. 

Physical 

Property 
Filler Type 

CMF OPC 

surface Area (m2/kg) 223 345 

Density (gm/cm3) 2.650 2.981 

Chemical 

SiO2 81.89 25.410 

Al2O3 3.78 2.324 

Fe2O3 1.92 1.125 

CaO 7.37 65.148 

MgO 3.45 1.326 

K2O 0.73 0.760 

Na2O 0.19 1.714 

The used bitumen was nominated with penetration grade (40–50), it was supplied from Al-

Neasseria in the South of Iraq. The selected neat bitumen cement meet the specification in ASTM D946 

[27]. Also, it was modified with SBS polymer called Kraton D1192 ESM. the properties of the neat and 

modified bitumen are presented in Table (3). while Table (4) illustrates the SBS polymer properties. The 

process of polymer-modified asphalts is not common procedure in Iraq. Thus, the SBS polymer and 

asphalt cement were prepared in the university of Kerbala laboratory.  

Table 3 Properties of the neat and modified bitumen. 

Properties Standard (ASTM) 0SBS 2SBS 4SBS 6SBS 

Penetration at 25 °C  

(0.1 mm) 
D5-73[28] 41.47 2.5 2.1 1.87 

(Ring and ball) Softening 

point °C 
C36-76 47.5 51 56 60.5 

Ductility at 25 °C (cm) D113-79 >100 cm >100 cm 80 cm 76 cm 

P.I. [29] -2.23 -2.30 -1.56 -0.79 

AFTER thin-film oven test (TFOT) 

Penetration at 25 °C  

(0.1 mm) 
D5-73[30] 2.90 2.38 2.00 1.8 

(Ring and ball) Softening 

point °C 
C36-76 50.5 53 66.5 68 

Mass Change, % 

D1754/D1754M − 09 

(Reapproved 2014) 

Standard[31] 

0.03 0.01 0.00 0.00 

Figure 1 Particle size distribution of recommended range and used middle gradation[32] 
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 Mixture design and analysis. 

Two OGFC mix types were included in this study i.e., traditional and modified mixes. The 

traditional mixture contained neat binder grade 40-50 type, virgin Coarse and fine aggregates, with CMF, 

OPC filler types. The selected of aggregate gradation was based on ASTM D7064[32] as cleared 

previously in Figure (1). Therefore, to determinate the characteristics of this mix, six different asphalt 

contents ranging between 5%-7.5% in increments of 0.5 % is introduced. The bitumen contents 6%-7% 

were found, corresponding to best durability and volumetric properties that satisfy limitations of ASTM 

D7064 criteria; i.e., cantabro, air-voids, and draindown test results.  

In this study, only three parameters where selected from mechanical, volumetric and durability 

properties to develop statistical models. However, the volumetric properties of OGFC mixes with two-

filler types and four polymer content and six-asphalt content were characteristic. Main indexes like bulk 

density, air void, effective Porosity, VFB, and VMA, permeability, draindown, were determined and 

analyzed according to ASTM D7064[32], while the permeability  was selected to represent the 

volumetric properties. The mechanical properties of OGFC were characterized by many tests; i.e., 

Indirect Tensile strength, Marshall Stability and flow, wheel truck test, skid resistance with the same mix 

design inputs. While, Indirect tensile strength (IDT) test  according to AASHTO T283[33] was selected 

as an important test to represent the mechanical properties of the OGFC. Similarly, the durability 

properties were evaluated by tensile strength ratio (TSR) test  according to AASHTO T283[33]. It is 

worth mentioned that in details models for each volumetric, mechanical, and durability properties will 

present in future publication. 

 Collected Data. 

The input data (results) of permeability (as an average of four samples results), ITS (as an average 

of three samples results), and TSR (as an average of three set results) each set comprised two conditioned 

and unconditioned samples). A total of 639 test results were collected and analyzed in (SPSS) software 

to extract the averaged results which used to build the model, the input averaged data are as presented in 

Table (5) below: 

Table 4 Results Matrix. 

Mix no. 

Mix design Input parameters Mix characteristic indexes 

Filler type SBS, % BC, % Permeability (K), cm/sec ITS, KPa TSR, % 

P5MO-0 OPC 0 5 186.1 282.59 93.22 
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OPC 0 5 188.29 ----- ----- 

P5.5MO-0 

OPC 0 5.5 142.87 586.39 94.34 

OPC 0 5.5 174.11 ----- ----- 

P6MO-0 

OPC 0 6 169.64 609.28 95.23 

OPC 0 6 137.81 ----- ----- 

OPC 0 6 139.80 ----- ----- 

OPC 0 6 134.22 ----- ----- 

P6.5MC-0 

CMF 0 6.5 ----- 699.77 41.37 

CMF 0 6.5 ----- 686.26 43.36 

CMF 0 6.5 ----- 693.02 43.69 

CMF 0 6.5 ----- ---- 41.82 

CMF 0 6.5 ----- ---- 44.9 

P6.5MO-0 

OPC 0 6.5 75.98 569.88 65.55 

OPC 0 6.5 142.34 538.24 95.8 

OPC 0 6.5 99.51 569.88 83.1 

OPC 0 6.5 124.95 554.06 63.65 

OPC 0 6.5 110.69 ---- 62.74 

OPC 0 6.5 110.69 ---- 95.8 

OPC 0 6.5 110.69 ---- ---- 

P7MO-0 

OPC 0 7 103.05 537.19 94.12 

OPC 0 7 103.05 ---- ---- 

OPC 0 7 77.21 ---- ---- 

OPC 0 7 83.57 ---- ---- 

OPC 0 7 103.05 ---- ---- 

OPC 0 7 103.04 ---- ---- 

OPC 0 7 103.05 ---- ---- 

P7.5MO-0 

OPC 0 7.5 106.72 290.71 93.01 

OPC 0 7.5 100.17 ---- ---- 

OPC 0 7.5 103.44 ---- ---- 

P6MO-2 

OPC 2 6 213.6 ---- ---- 

OPC 2 6 251.75 ---- ---- 

OPC 2 6 180.6 ---- ---- 

P6.5MO-2 

OPC 2 6.5 188.69 823.99 95.1 

OPC 2 6.5 209.16 709.54 89 

OPC 2 6.5 232.79 759.49 94.99 

OPC 2 6.5 174.77 701.88 87.5 

OPC 2 6.5 200.58 734.52 95.6 

P6.5MC-2 

CMF 2 6.5 202.72 679.66 76.6 

CMF 2 6.5 219.59 627.71 76.25 

CMF 2 6.5 211.15 680.85 74 

CMF 2 6.5 ---- 768.25 73.88 



Journal of University of Babylon for Engineering Sciences, Vol. (27), No. (1): 2019. 

371 

 

CMF 2 6.5 ---- 654.28 74.12 

P7MO-2 

OPC 2 7 162.52 ---- ---- 

OPC 2 7 186.48 ---- ---- 

OPC 2 7 168.51 ---- ---- 

OPC 2 7 184.95 ---- ---- 

P6.5MO-4 

OPC 4 6.5 152.88 715.03 93.1 

OPC 4 6.5 158.74 707.52 88.6 

OPC 4 6.5 153.77 627.02 93.05 

OPC 4 6.5 136.45 677.62 91.11 

OPC 4 6.5 150.46 ---- ---- 

P6.5MC-4 

CMF 4 6.5 296.8 627.36 68.06 

CMF 4 6.5 247.51 657.64 67.11 

CMF 4 6.5 223.17 783.25 66.46 

CMF 4 6.5 282.04 719.61 67.21 

CMF 4 6.5 262.38 720.45 ---- 

P6MO-4 

OPC 4 6 182.73 610.3 ---- 

OPC 4 6 184.01 667.27 ---- 

OPC 4 6 171.42 ---- ---- 

OPC 4 6 168.83 ---- ---- 

OPC 4 6 206.64 ---- ---- 

P6.5MC-6 

CMF 6 6.5 251.96 819.94 50.91 

CMF 6 6.5 218.28 ---- 50.91 

CMF 6 6.5 235.12 ---- 43.4 

P6.5MO-6 

OPC 6 6.5 145.46 779.96 76.8 

OPC 6 6.5 141.85 803.72 78.3 

OPC 6 6.5 143.97 791.84 77.5 

OPC 6 6.5 130.62 ---- ---- 

P7MO-4 

OPC 4 7 162.15 ---- ---- 

OPC 4 7 167.85 ---- ---- 

OPC 4 7 129.99 ---- ---- 

OPC 4 7 115.65 ---- ---- 

P6MO-6 

OPC 6 6 178.25 ---- ---- 

OPC 6 6 205 ---- ---- 

OPC 6 6 225.82 ---- ---- 

OPC 6 6 195.55 ---- ---- 

OPC 6 6 173.11 ---- ---- 

P7MO-6 
OPC 6 7 105.18 ---- ---- 

OPC 6 7 107.58 ---- ---- 
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3. Statistical analysis model. 

 Model preparation. 

Model preparation from the outcomes that obtained in the experimental work is an essential in 

this research. Empirical modeling was achieved using analysis tools of SPSS software. The variables 

involved in the empirical modeling were filler types, binder content, and percent of SBS. The collected 

averaged results are 72,40, and 37 for each test of permeability, tensile strength ratio, and indirect tensile 

strength, respectively, consequently, a total of 639 test result were collected and analysis. The results 

were divided randomly into 49, 30, 28 result to generate the model and the other 23, 10, 9 for each test 

of permeability, TSR, and ITS, respectively, were used to validate the model. The first step to model 

preparations is to the correlation between the variables using SPSS Pearson's correlation. Many 

combinations of variables were used starting from only constant to quadratic form of the variables with 

the incorporation of multiple terms of the various variables discussed above. 

To achieve the obligations for the built models, program testing needs to determine dependent 

and independent variables of the developed models. The variables and the code adopted for calculation 

are presented in Table (6). 

Table 5 Dependent and independent variables considered in regression analysis. 

Dependent variable 

Abbrev. Descrip. Unit Coded values 

ITS Indirect tensile strength KPa  

K permeability mm  

TSR Water sensitivity %  

Independent variable 

FT Filler type 
CMF  15 

OPC 20 

SBS Polymer content  %  

BC Binder content  %  

4. Result and Discussion for The Prediction Models. 

SPSS software was used to build and analysis the models. For the simplification the linear models 

were tried first, unfortunately, the trials that made for linear models were unsuccessful to represent the 

observations. However, it was found that all prediction models were nonlinear, as will see hereafter.    

 Building the permeability model. 

As mentioned previously the Permeability was selected to build a model from many volumetric 

parameters. This selection is established on the believe that it is the most important character. Modeling 

permeability to filler type, binder content, and polymer content was conducted. Many models were tried 

(linear, multiple and nonlinear models). It was observed that all linear models were failed to estimate 

accurate predicted values of permeability. Tables (7) demonstrates samples of the tried models, whereas 

low values of (R²) are the predominant for both regression and model validation. It is worth mentioned 

that other testing parameters than R² were conducted to test the validity of the models, but the values of 

R² are only presented for simplification and prevent dilatation.  

On the other hand, after many trials a nonlinear model was determined with reasonable accuracy. 

The analysis results of adopted nonlinear model is shown in Tables (8), (9), and (10). The model’s 

analysis consists of the analysis of goodness fitting and variance for observed and predicted result. The 

model adequacy is illustrated in figure (2). The following can be recognized from the analysis process: 

1. Table (8) explains the bivariate Pearson Correlation between variables. The same table shows that the 

independent variables have very low to absent of correlation between each other, which is good for the 

accuracy of the model. 

2. Table (8) demonstrates that the filler type has the most significant correlation to permeability, then 

binder content and lastly polymer content. Although, binder content is believed to be the most 

important, but we have to remember that the used ranges of building the model is limited.   

3. Table (10) states that the MSE is low, which is good for the significant of the model. 
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4. Table (9) shows the parameter of the developed model and its limitation with Confidence Interval of 

95%.  

5. Table (10) discloses that the sum of regression is higher that sum of residue which is sustained the 

significant of the model. While, from the same table, the high value of the R-Square (0.781) indicates 

an acceptable prediction.  

6. Figure (2) indicates that acceptable scatter can recognized between predicted and observed K values, 

furthermore, almost all value within the significant level boundaries. 

Table 6 Trial Equations to Predict The Value of Permeability. 

Types of equations models R2 

linear 𝑘 = 717.7 + 5.71 ∗ 𝑠𝑏𝑠 − 16.3 ∗ 𝑓𝑡 − 39.4 ∗ 𝑏𝑐 0.621 

linear 𝑘 = 507.3 − 17.8 ∗ 𝑓𝑡 0.401 

cubic 𝑘 = 507.3 − 17.7 ∗ 𝑓𝑡 0.401 

compound 𝑘 = 1042.2 + 0.907 ∗ 𝑓𝑡 0.311 

logarithmic 𝑘 = 24223.4 − 1.7 ∗ ln 𝑓𝑡 0.311 

nonlinear 𝑘 = 147.8 + 0.056 ∗ 𝑠𝑏𝑠 ∗ 𝑓𝑡 ∗ 𝑏𝑐 0.095 

nonlinear 
𝑘 = 145.88 + 2.6 ∗ (

𝑠𝑏𝑠 ∗ 𝑓𝑡

𝑏𝑐
) 

0.12 

nonlinear 𝑘 = 306.8 + 0.486 ∗ 𝑠𝑏𝑠2 − 0.003 ∗ 𝑓𝑡3 ∗ 𝑏𝑐 0.553 

nonlinear K=435.6=0.908*sbs*bc-2.29*ft*bc 0.612 

Table 7 Correlation Between Permeability and Variables. 

Correlations 

 SBS FT BC K 

SBS 

Pearson Correlation 1 -.205 .038 .276* 

Sig. (2-tailed)  .077 .744 .017 

No. 75 75 75 75 

FT 

Pearson Correlation -.205 1 -.017 -.631** 

Sig. (2-tailed) .077  .886 .000 

No. 75 75 75 75 

BC 

Pearson Correlation .038 -.017 1 -.396** 

Sig. (2-tailed) .744 .886  .000 

No. 75 75 75 75 

K 

Pearson Correlation .276* -.631** -.396** 1 

Sig. (2-tailed) .017 .000 .000  

No. 75 75 75 75 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 8 Nonlinear permeability modeling 

Developed 

model 
𝐾 = 𝑐1 + 𝑐2 ∗ 𝐵𝐶 + 𝑐3 ∗ 𝐵𝐶2 + 𝑐4 ∗ 𝑆𝐵𝑆 − 𝑐5 ∗ 𝑆𝐵𝑆2 + 𝑐6 ∗ 𝑆𝐵𝑆3 − 𝑐7 ∗ 𝐹𝑇 

Parameter Estim. 

Parameter Estim. Std. Err. 
95% Confidence Interval 

Lower Bound. Upper Bound. 

c1 1110.146 345.026 421.658 1798.634 

c2 169.623 107.030 -43.951 383.198 

c3 9.783 8.393 -6.966 26.531 

c5 22.059 5.256 11.572 32.547 

c6 1.836 .571 .697 2.975 

c7 15.276 1.737 11.810 18.742 

c4 71.171 12.083 47.059 95.283 
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Table 9 ANOVA for permeability modeling 

ANOVAa 

Source Sum of Squares df Mean Squares 

Regression 2149248.823 7 307035.546 

Residual 43006.629 68 632.450 

Uncorrected Total 2192255.452 75  

Corrected Total 195946.010 74  

Dep. variable: K 

a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .781. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2comparisons between the experimental and predicted values of permeability. 

  Building the Tensile strength ratio modal. 

As mentioned previously the TSR was selected to build a model from many durability 

parameters. This selection is established on the believe that it is the most important durability 

character. Modeling TSR to filler type, binder content, and polymer content was conducted. 

Many models were tried (linear, multiple and nonlinear models). It was observed that all linear 

models were failed to estimate accurate predicted values of TSR. Tables (11) demonstrates 

samples of the tried models, whereas low values of (R²) are the predominant for both regression 

and model validation. It is worth mentioned that other testing parameters than R² were used to 

test the validity of the models, but the values of R² are only presented for simplification and 

prevent dilatation.  

On the other hand, after many trials a nonlinear model was determined with reasonable 

accuracy. The analysis results of adopted nonlinear model are shown in Tables (12), (13), and 

(14). The model’s analysis consists of the analysis of goodness fitting and variance for observed 

and predicted result. Figure (3) demonstrates the adequacy of model. The following can be 

recognized from the analysis process: 

1. Table (12) explains the bivariate Pearson Correlation between variables. The same table shows that 

the independent variables have very low to absent of correlation between each other, which is good 

for the accuracy of the model. 

2. Table (12) demonstrates that the filler type has the most significant correlation to TSR, then polymer 

content and lastly binder content.  

Confidence interval 95% 
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3. Table (14) states that the MSE is low, which is good for the significant of the model. 

4. Table (13) shows the parameter of the developed model and its limitation with Confidence Interval 

of 95%.  

5. Table (14) discloses that the sum of regression is higher that sum of residue which is sustained the 

significant of the model. While, from the same table, the high value of the R-Square (0.821) indicates 

a good prediction, thus from this value a conclusion can draw that the developed model for Tensile 

strength ratio is acceptable. 

6. Figure (3) indicates that acceptable scatter can recognized between predicted and observed operability 

values, furthermore, almost all value within the significant level boundaries.     

Table 10 Trial Equations to Predict The Value of Tensile strength ratio. 

Types of equations Models R2 

Linear 𝑇𝑆𝑅 = −7.9 − 0.024 ∗ 𝑠𝑏𝑠 − 2.33 ∗ 𝑏𝑐 + 5.52 ∗ 𝑓𝑡 0.569 

Linear 𝑇𝑆𝑅 − 24.5 + 5.57 ∗ 𝑓𝑡 0.566 

Cubic TSR = 23.25 + 0.159 ∗ ft2 0.566 

Compound 𝑇𝑆𝑅 = 16.967 + 1.09 ∗ 𝑓𝑡 0.536 

Logarithmic 𝑇𝑆𝑅 = 1.25 + 1.41 ∗ ln 𝑓𝑡 0.536 

Nonlinear 𝑇𝑆𝑅 = 115.3 + 0.002 ∗ 𝑠𝑏𝑠 ∗ 𝑓𝑡 − 6.339 ∗ 𝑏𝑐 0.014 

Nonlinear 𝑇𝑆𝑅 = 33.6 − 1.6 ∗ 10−11 ∗ 𝑓𝑡2 ∗ 𝑠𝑏𝑠5 ∗ 𝑏𝑐 + 0.008 ∗ 𝑏𝑐3 ∗ 𝑓𝑡 0.245 

Nonlinear 𝑇𝑆𝑅 − 8.176 − 0.003 ∗ 𝑓𝑡 ∗ 𝑠𝑏𝑠 + 0.733 ∗ 𝑏𝑐 ∗ 𝑓𝑡 0.451 

Nonlinear 𝑇𝑆𝑅 = −7.9 − 0.024 ∗ 𝑠𝑏𝑠 − 2.33 ∗ 𝑏𝑐 + 5.52 ∗ 𝑓𝑡 0.569 
 

Table 11 correlation between TSR and variables. 

Correlations 

 TSR sbs BC FT 

TSR 

Pearson Correlation 1 -.128 -.116 .752** 

Sig. (2-tailed)  .430 .476 .000 

No. 40 40 40 40 

sbs 

Pearson Correlation -.128 1 .097 -.135 

Sig. (2-tailed) .430  .550 .407 

No. 40 40 40 40 

BC 

Pearson Correlation -.116 .097 1 -.094 

Sig. (2-tailed) .476 .550  .564 

No. 40 40 40 40 

FT 

Pearson Correlation .752** -.135 -.094 1 

Sig. (2-tailed) .000 .407 .564  

No. 40 40 40 40 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 12 Nonlinear TSR modeling 

Developed 

model 
𝑇𝑆𝑅 = 𝑐1 + 𝑐2 ∗ 𝑠𝑏𝑠 − 𝑐3 ∗ 𝑠𝑏𝑠2 + 𝑐4 ∗ 𝑠𝑏𝑠3 − 𝑐5 ∗ 𝑏𝑐 + 𝑐6 ∗ 𝑏𝑐3 + 𝑐7 ∗ 𝐹𝑇 

Parameter Estim. 

Parameter Estim. Std. Err. 
95% Confidence Interval 

Lower Bound. Upper Bound. 

c1 262.594 114.196 30.260 494.927 

c2 5.940 1.442 3.007 8.873 

c3 .158 .048 .060 .255 

c4 .001 .000 .000 .002 

c5 80.307 27.208 24.952 135.662 

c6 .655 .232 .183 1.126 

c7 5.607 .567 4.454 6.761 
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Table 13 ANOVA for TSR modeling 

ANOVAa 

Source Sum of Squares df Mean Squares 

Regression 236488.154 7 33784.022 

Residual 2393.275 33 72.523 

Uncorrected Total 238881.429 40  

Corrected Total 13398.602 39  

Dep. variable: TSR 

a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .821. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3comparisons between the experimental and predicted values of TSR. 

 Building the Indirect tensile strength model. 

 As mentioned previously the ITS was selected to build a model from many Mechanical 

parameters. This selection is established on the believe that it is the most important mechanical character. 

Modeling ITS to filler type, binder content, and polymer content was conducted. Many models were tried 

(linear, multiple and nonlinear models). It was observed that all linear models were failed to estimate 

accurate predicted values of ITS. Tables (15) demonstrated samples of the tried models, whereas low 

values of (R²) are the predominant for both regression and model validation. It is worth mentioned that 

other testing parameters than R² were used to test the validity of the models, but the values of R² are only 

presented for simplification and prevent dilatation.  

On the other hand, after many trials a nonlinear model was determined with reasonable accuracy. 

The analysis results of adopted nonlinear model are shown in Tables (16), (17), and (18). The model’s 

analysis consists of the analysis of goodness fitting and variance for observed and predicted results. 

Figure (4) demonstrates the adequacy of model. The following can be recognized from the analysis 

process: 

1. Table (16) explained the bivariate Pearson Correlation between variables. The same table shows that 

the independent variables have low to absent of correlation between each other, which is good for the 

accuracy of the model. 

confidence interval 95% 
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2. Table (16) demonstrates that the polymer content has the most significant correlation to ITS, then 

filler type and lastly binder content.  

3. Table (18) states that the MSE is low, which is good for the significant of the model. 

4. Table (17) shows the parameter of the developed model and its limitation with Confidence Interval 

of 95%.  

5. Table (18) discloses that the sum of regression is higher that sum of residue which is sustained the 

significant of the model. While, from the same table, the high value of the R-Square (0.820) indicates 

a perfect prediction, thus from this value a conclusion can draw that the developed model for ITS is 

acceptable. 

6. Figure (4) indicates that acceptable scatter can recognize between predicted and observed operability 

values, furthermore, almost all value within the significant level boundaries.     

Table 14 Trial Equations to Predict The Value of Indirect tensile strength. 

Types of equations Models R2 

Linear 𝐼𝑇𝑆 = 621.6 + 3.81 ∗ 𝑠𝑏𝑠 + 22.6 ∗ 𝑏𝑐 − 11.57 ∗ 𝑓𝑡 0.367 

Linear 𝐼𝑇𝑆 = 555.02 + 3.93 ∗ 𝑠𝑏𝑠 0.303 

Cubic 𝐼𝑇𝑆 = 145.8 + 55.8 ∗ 𝑠𝑏𝑠 − 1.6 ∗ 𝑠𝑏𝑠2 + 0.16 ∗ 𝑠𝑏𝑠3 0.489 

Compound ln 𝐼𝑇𝑆 = 539.3 + 1.007 ∗ 𝑠𝑏𝑠 0.244 

Logarithmic ln 𝐼𝑇𝑆 = 358.8 + 0 + 19 ∗ ln 𝑠𝑏𝑠  0.297 

Nonlinear 𝐼𝑇𝑆 =568+0.029*bc*sbs*ft 0.29 

Nonlinear 𝐼𝑇𝑆 = 713.2 + 3.95 ∗ 𝑠𝑏𝑠 − 1.357 ∗ 𝑏𝑐 ∗ 𝑓𝑡 0.34 

Nonlinear 𝐼𝑇𝑆 = 621.6 + 3.81 ∗ 𝑠𝑏𝑠 + 22.6 ∗ 𝑏𝑐 − 11.6 ∗ 𝑓𝑡 0.367 

Nonlinear 𝐼𝑇𝑆 = 1092.18 − 7.59 ∗ 𝑠𝑏𝑠 − 1.3 ∗ 𝑏𝑐 − 28.57 ∗ 𝑓𝑡 + 0.095
∗ 𝑠𝑏𝑠 ∗ 𝑏𝑐 ∗ 𝑓𝑡 

0.405 

Table 15 correlation between ITS and variables. 

 

Table 16 Nonlinear ITS modeling   

Developed 

model 
𝐼𝑇𝑆 = 𝑐1 + 𝑐2 ∗ 𝑠𝑏𝑠 − 𝑐3 ∗ 𝑠𝑏𝑠2 + 𝑐4 ∗ 𝑠𝑏𝑠3 + 𝑐5 ∗ 𝑏𝑐 − 𝑐6 ∗ 𝑏𝑐2 − 𝑐7 ∗ 𝑓𝑡 

Parameter Estim. 

Parameter Estim. Std. Err. 

95% Confidence Interval 

Lower Bound. Upper Bound. 

c1 -7647.534 1145.557 -9987.073 -5307.994 

c2 34.169 9.829 14.096 54.242 

c3 1.092 .317 .445 1.740 

c4 .011 .003 .005 .017 

c5 2607.087 370.707 1850.003 3364.170 

c6 209.286 29.821 148.383 270.189 

c7 4.226 3.959 -3.860 12.312 

Correlations 

 SBS BC FT ITS 

sbs Pearson Correlation 1 .117 -.039 .551** 

Sig. (2-tailed)  .491 .818 .000 

No. 37 37 37 37 

bc Pearson Correlation .117 1 -.089 .152 

Sig. (2-tailed) .491  .601 .371 

No. 37 37 37 37 

ft Pearson Correlation -.039 -.089 1 -.264 

Sig. (2-tailed) .818 .601  .114 

No. 37 37 37 37 

ITS Pearson Correlation .551** .152 -.264 1 

Sig. (2-tailed) .000 .371 .114  

No. 37 37 37 37 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 17 ANOVA for ITS modeling 

ANOVAa 

Source Sum of Squares df Mean Squares 

Regression 16602904.820 7 2371843.545 

Residual 93367.856 30 3112.262 

Uncorrected Total 16696272.670 37  

Corrected Total 518335.159 36  

Dep. variable: ITS 

a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .820. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4comparisons between the experimental and predicted values of ITS. 
 

5. Conclusion. 

From the statistical analysis of this research study, the following can be concluded: 

1. General well-known linear and nonlinear model offered by available software could not represent the 

resulted values of mechanical, volumetric and durability properties in acceptable models.  

2. Modeling the OGFC volumetric, mechanical, and durability characteristics with reference to mix 

design inputs is achievable and satisfactory in terms of prediction and the significant of input 

parameters with more complicated multi-variable non-liner models.  

3. Permeability model is proven to be predictive from filler type, polymer content, and binder content. 

At the same time and within models’ boundaries, the filler type has the most significant correlation 

to permeability, then binder content and lastly polymer content. 

4. Moisture sensitivity model is proven to be predictive from filler type, polymer content, and binder 

content. At the same time and within models’ boundaries, filler type has the most significant 

correlation to TSR, then polymer content and lastly binder content 

5. ITS model is proven to be predictive from filler type, polymer content, and binder content. 

Simultaneously and within models’ boundaries, polymer content has the most significant correlation 

to ITS, then filler type and lastly binder content. 
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