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Abstract 

The mechanical performance of fiber-reinforced concrete (FRC), especially its flexural 

strength and toughness measured by the load-deflection response, depends strongly on fiber 

characteristics such as volume fraction, length, tensile strength, shape, and type. While extensive 

research has explored these factors, much of it relies on idealized laboratory data, limiting 

practical applicability. This study addresses this gap by using real-world FRC data to develop 

predictive machine learning (ML) models that capture the combined influence of fiber and 

concrete properties on toughness. A comprehensive dataset of 146 FRC samples compiled from 

prior studies was analyzed. Four regression models—Random Forest (RF), Gradient Boosting 

(GB), Linear Regression, and Support Vector Regression—were trained and evaluated to predict 

the area under the load-deflection curve, a key indicator of toughness. The GB model achieved 

the best performance, with a coefficient of determination (R²) of 0.83 and a mean absolute error 

(MAE) of approximately 39, followed closely by RF (R² = 0.79). Feature importance analysis 

identified fiber volume fraction, fiber type and shape, and flexural strength as the most 

influential factors in enhancing toughness. This research provides a robust, data-driven 

predictive tool for estimating FRC toughness based on key physical and mechanical properties, 

offering valuable insights for engineers to optimize fiber-reinforced composite designs in 

practical structural applications. 
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1. Introduction 

Fiber-reinforced concrete (FRC) is widely used for its improved toughness, ductility, and 

crack resistance over conventional concrete, typically assessed via load-deflection under flexural 

loading. Key fiber characteristics affecting performance include volume fraction (Vf), length, 

tensile strength, shape, and type. Vf strongly influences mechanical behavior; increasing Vf 

enhances load capacity and toughness by improving crack bridging [[1]; [2]; [3]; [4]], but 

excessive Vf can reduce workability due to clumping [[5]]. [6] suggest 0.5–1.5% Vf as optimal, 

with Garcia et al. [7] showing energy absorption rises up to a limit. Fiber length and aspect ratio 

affect crack control and flexural performance. Longer fibers (20–35 mm) with higher aspect 

ratios improve toughness [ [8]; [9]; [12]; [14]], though too long fibers reduce mix consistency 

[[13]]. Tensile strength impacts crack resistance; strong fibers like steel and carbon boost 

toughness [[15]; [16]], while basalt fibers offer strength and corrosion resistance [[5]; [2]]. 

Polypropylene mainly aids toughness and crack control [[6]]. Higher tensile strength correlates 

with greater post-crack load capacity [Garcia et al. [7]]. Fiber geometry influences bonding: 
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hooked and crimped fibers improve interlock and toughness [[8]; [12]], while fibrillated 

polypropylene enhances ductility [[9]]. Fiber shape selection depends on desired mechanical 

behavior. Fiber type affects performance: steel offers high flexural capacity [[15]; [16]], glass 

fibers control cracks but may degrade [[13]; [4]], carbon provides high strength and stiffness 

[Ahmed et al. [8]; Smith et al. [1]], and polypropylene is cost-effective and durable. [[6]; [9]], 

and basalt combines durability and strength [[5]]. Flexural strength testing correlates with energy 

absorption and toughness [[7]; [2]]. Optimizing fiber volume, shape, and length improves post-

crack behavior [[12]; [9]], though excessive fiber content reduces performance [[6]]. The area 

under the load-deflection curve (AULDC) reflects ductility and toughness, increasing with high-

volume, strong, long, and interlocking fibers [[1]; [7]]. These enhance durability under impact or 

cyclic loads [[13]; [16]].  

Despite extensive research, many models rely on simplified lab data and limited variable 

interaction. Several studies have noted that empirical and regression-based models for FRC are 
commonly developed using controlled laboratory-scale datasets with narrow parameter ranges and 

limited combinations of fiber and mix variables [[22]; [23]; [15]]. Real-world predictive tools are 

lacking. Such laboratory-focused approaches often evaluate only one or two fiber parameters while 
keeping other concrete properties constant, which limits the ability of these models to generalize to 

heterogeneous, real-world FRC systems [[12]; [7]]. [18] applied machine learning (ML) to predict 

compressive strength, with Gradient Boosting (GB) and Extreme Gradient Boosting (XGB) 

performing best, influenced mostly by cement, water, and silica fume. Building on this, the 

present study uses 146 real-world FRC samples and regression-based ML models to predict 

AULDC, aiming to identify key variables fiber shape, type, Vf, tensile strength, and concrete 

properties that govern toughness. This data-driven approach is intended to improve model 
generalization and provide practical guidance for optimizing FRC performance. 

2. Modeling Approach 

A dataset of 146 fiber-reinforced concrete (FRC) samples was compiled from prior 

studies [1–26] with data description shown in Table 1 containing input features such as fiber 

shape, length, volume fraction (%Vf), aspect ratio (l/d), compressive strength, flexural strength, 

fiber type, and tensile strength. The target variable was the area under the load-deflection curve 

(AULDC). After removing entries with missing data, the dataset was split into training and 

testing sets (86/14). 

The samples were randomly assigned to the training and testing subsets using a fixed 

random seed (random_state = 42) to ensure reproducibility and to avoid bias toward any specific 

fiber type, strength level, or toughness range. 

The ranges of all input variables in the testing set were verified to fall within the minimum and 

maximum bounds of the training set, ensuring that no extrapolation beyond the learned feature 

space was required during model evaluation. 

Four regression models were developed: Linear Regression (LR), Random Forest (RF), 

Gradient Boosting (GB), and Support Vector Regression (SVR). LR served as a baseline for 

linear trends. RF and GB, implemented via scikit-learn, captured nonlinear interactions. RF used 

n_estimators = 100 and max_depth = None, while GB used n_estimators = 100, learning_rate = 
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0.1, and max_depth = 5. SVR employed kernel functions to address linear and nonlinear data 

patterns. All models were trained and tested using the same data split to ensure a fair comparison 

of predictive performance. 

Table 1. Data Descriptions 

Feature Name Description Unit 

Fiber length (mm) Length of the fiber used mm 

%Vf Fiber volume fraction % 

l/d Aspect ratio (length/diameter) — 

Compressive 

strength 
Compressive strength of concrete MPa 

Flexural strength Flexural strength of concrete MPa 

Type of fiber 
Categorical type (steel, 

polypropylene, etc.) 
— 

Fiber tensile 

strength 
Strength of the fiber MPa 

Area 
Measured area related to failure 

or response 
mm² or other 

3. Model Evaluation 

The dataset was split into training and testing sets using an 86/14 ratio. This means 86% 

of the data was used for training and 14% for testing. This split was chosen after trying different 

options to make sure the model learns well but can still be tested on new data. This helps 

improve the model’s accuracy and stability. 

3.1 Random Forest’s vs Gradient Boosting's 

Model performance was assessed using the coefficient of determination (R²), mean 

squared error (MSE), and mean absolute error (MAE) on the test set. The RF model achieved an 

R² of 0.7907, indicating it explained approximately 79% of the variance in the target variable. Its 

MSE and MAE were 2722 and 38.69, respectively. The GB model performed slightly better, 

with an R² of 0.83, MSE of 2234, and MAE of 39.36, reflecting a reasonable prediction error 

given the variability in the data. 

3.2 Interpretation of Model Errors Relative to Target Scale 

The target variable AULDC ranges from 9 to 494, with a mean of about 121. The RF and 

GB models achieved MAEs of 38.7 and 39.4, respectively, meaning predictions deviate on 

average by roughly 39 units, or 32% of the mean value. Despite strong R² scores (0.79 and 0.83), 

this error magnitude indicates significant room for improvement through additional features, 

model refinement, or further investigation. 
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4. Results and discussion 

4.1 Dataset Analysis and Model Prediction Results 

The dataset comprises 146 FRC samples covering a broad range of fiber types, 

geometries, and concrete strengths. As shown in Table 2, fiber length varies from 10 to 60 mm, 

volume fraction (%Vf) from 0.1% to 2.0%, and fiber tensile strength from 55 to 2600 MPa. The 

target variable, AULDC, ranges from 9 to 494 kN·mm. 

Both Random Forest (RF) and Gradient Boosting (GB) models demonstrated strong 

predictive capability for AULDC. GB achieved the highest accuracy (R² = 0.83), followed by RF 

(R² = 0.79). These results indicate that ensemble-based models are effective in capturing the 

complex and nonlinear relationships governing FRC toughness, which cannot be adequately 

represented using simple linear models. Linear regression showed limited predictive capability. 

Feature-level analysis reveals that fiber shape and tensile strength play a dominant role in 

post-crack toughness. This finding is consistent with experimental studies reported by [8] and  

[12], which highlight the importance of mechanical anchorage and fiber pull-out resistance in 

enhancing energy absorption. Hooked and crimped fibers exhibit higher predicted AULDC 

values due to enhanced mechanical anchorage. Straight fibers generally result in lower 

toughness, while synthetic fibers such as polypropylene and copolymer show greater variability. 

This variability may be attributed to differences in elastic modulus and fiber–matrix bonding 

mechanisms. 

Nonlinear trends were observed between compressive strength, fiber tensile strength, and 

AULDC. Polynomial regression provided a better fit for these parameters, suggesting 

diminishing returns in toughness at higher strength levels. This observation aligns with  [15], 

who reported that increasing fiber strength beyond a threshold does not proportionally enhance 

flexural performance. In contrast, fiber length and volume fraction displayed approximately 

linear relationships with AULDC within the investigated range, supporting conclusions from[1] 

and [12]. 

Table 2 statistical summary 

 Samples Mean St.D Min Q25

% 

Media

n 

Q75% Max 

Fiber L 

(mm) 

146 31.25 14.1 10 20 30 35.000 60. 

Vf% 146 0.88 0.41 0.1 0.5 1 1.200 2.0 

L/D 146 45.14 28.17 0.0 38.18 50 65.000 159 

C.S (MPa) 146 46.6 10.32 20 40.45 45 54.200 70 

fr        (MPa) 146 7.2 3.27 2.2 4.81 61 9.075 14.9 

Fiber 

ft(MPa) 

146 1117.2 533.86 55 700 1100 1325.0 2600 

Area 

(kN.mm) 

146 120.98 102.06 9 27.1 114.4 185.85

0 

494 
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4.2 Relationship Between the Different Features and the Target Area Under 

Load-Deflection Curves (AULDC) 

In this study, the relationships between key features and the AULDC were explored using 

both linear and second-degree polynomial regression. Linear regression, due to its 

interpretability, serves as a conventional baseline; however, visual inspection and model fitting 

revealed that some features demonstrated nonlinear behavior in relation to the target. [For 

example, using polynomial regression gave better results for compressive strength and fiber 

tensile strength. This means the relationship is not a straight line. When the compressive or 

tensile strength gets very high, the increase in energy absorption becomes smaller. This agrees 

with [15], who also found that using very strong fibers doesn't always lead to much better 

flexural performance. Conversely, for features like fiber length and Vf%, the linear fit proved 

adequate, supporting results from [12] and [1], who reported that these properties exhibit more 

predictable, proportional effects on toughness up to an optimal range. The results in Figures 1–8 

show that the relationship between the input features and FRC toughness is not always straight. 

This means we need to consider possible non-linear patterns when building the model. 

4.3 Model Evaluation and Comparison with Literature 

Gradient boosting emerged as the best-performing model (R² = 0.83, MAE = 39.4, MSE 

= 2234), followed by random forest (R² = 0.79, MAE = 38.7, MSE = 2722). These results align 

with previous studies (e.g.,  [22]; [23]) that demonstrate ensemble models’ ability to capture 

complex material behavior more effectively than linear approaches. However, the MAE is still 

quite high—about 32% of the average AULDC, which was calculated by dividing the MAE by 

the average AULDC (39.4 / 121). This might be okay for early testing or basic analysis, but this 

error might be too large if we want to use the model to decide things like the best fiber type or 

amount to use in real concrete designs. To make better decisions, the model should be improved 

or more data should be added. 

One limitation of this study is that I did not adjust the model settings (called 

hyperparameter tuning), such as tree depth or learning rate. I kept all model settings at their 

default values to make a fair comparison across different algorithms. In future work, using tuning 

methods like grid search or cross-validation may help improve the model's accuracy and 

generalization. 
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Fig. 1 Relationship between fiber shape and AULDC with both linear and nonlinear fits. 

Fiber shape codes: 0 = straight, 1 = corrugated, 2 = hooked, 3 = fibrillated polypropylene 

(PP). 

 

Fig. 2 Relation between fiber type and area for both of the two figures with linear and 

nonlinear fits. In which,  (4=steel, 5=PP, 6=glass, 7=carbon, 8=basalt, 9=twisted steel) 

 

Fig. 3 Relation between fiber length and area for both of the two figures with linear and 

nonlinear fits. 



ARTICLE  
JOURNAL`S UNIVERSITY OF BABYLON FOR 

ENGINEERING SCIENCES (JUBES) 

بـــــــــابــل للعلــــــــوم الهندسيةامعة ـــــــمــــــجلــة ج  

 

Vol. 33, No.6. \ 2025  ISSN: 2616 - 9916 

 

60 

 

Fig. 4 Relation between % Vf and area for both of the two figures with linear and  

nonlinear fits. 

 

Fig. 5 Relation between L/D  and area for both of the two figures  with linear and nonlinear 

fits. 

 

Fig. 6 Relation between compressive strength and area for both of the two figures  with 

linear and nonlinear fits. 
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Fig. 7 Relation between flexural strength and area for both of the two figures  with linear 

and nonlinear fits. 

 

Fig. 8 Relation between fiber tensile strength and area for both of the two figures  with 

linear and nonlinear fits. 

Conclusion 

This study applied machine learning regression techniques to predict the flexural 

toughness of fiber-reinforced concrete, quantified by the area under the load–deflection curve 

(AULDC), using a dataset compiled from multiple experimental sources. Ensemble-based 

models—particularly Gradient Boosting and Random Forest—demonstrated superior 

performance compared to linear regression, confirming the inherently nonlinear nature of FRC 

post-crack behavior. 

The results highlight the critical influence of fiber shape, volume fraction, tensile 

strength, and aspect ratio on toughness development. Hooked and crimped fibers consistently 

produced higher energy absorption due to improved mechanical anchorage, while diminishing 

returns were observed at high strength levels, consistent with prior experimental findings. 

Although the GB model achieved the highest predictive accuracy (R² = 0.83), the relatively high 

MAE, indicating moderate accuracy acc 

Compared to traditional empirical models derived from controlled laboratory data, the 

proposed ML approach offers improved generalization across diverse FRC systems but requires 

further refinement. Future work should focus on expanding the dataset, incorporating additional 

variables related to mix design and curing conditions, and applying systematic hyperparameter 

optimization and cross-validation to enhance model robustness and practical applicability. 
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 تحليل خصائص المتانة للخرسانة المدلحة بالألياف باستخدام تقنيات التعلم الآلي
 دنيازاد كاظم عاصي

 كمية اليشجسة، جامعة الدميسانية، الدميسانية، إقميػ كخدستان، العخاق
dunyazad.assi@univsul.edu.iq 

 الخلاصة 

يعتسج الأداء السيكانيكي لمخخسانة السدمحة بالألياف، ولا سيسا مقاومة الانحشاء والستانة السقاسة مؼ خلال استجابة 
وعمى  .، والطؽل، ومقاومة الذج، والذكل، والشؽع للألياف الحجػ ندبة الإزاحة، بذكل كبيخ عمى خرائص الألياف مثل–الحسل

الخغػ مؼ أن العجيج مؼ الجراسات الدابقة تشاولت ىحه العؽامل، إلا أن مععسيا استشج إلى بيانات مخبخية مثالية، مسا يحج مؼ 
تيجف ىحه الجراسة إلى سج ىحه الفجؽة مؼ خلال استخجام بيانات واقعية لمخخسانة السدمحة بالألياف  .إمكانية تطبيقيا عسميًا
قائسة عمى تقشيات التعمػ الآلي، قادرة عمى تسثيل التأثيخ السذتخك لخرائص الألياف والخخسانة عمى لتطؽيخ نساذج تشبؤية 

 .الستانة

تػ تحميل مجسؽعة بيانات شاممة تتكؽن مؼ مائة وست وأربعيؼ عيشة مؼ الخخسانة السدمحة بالألياف، جُسعت مؼ 
نسؽذج الغابة العذؽائية، ونسؽذج تعديد التجرج، والانحجار جخى تجريب وتقييػ أربعة نساذج انحجار، شسمت  .دراسات سابقة

الإزاحة، والتي تُعج مؤشخًا رئيديًا لستانة –الخطي، ونسؽذج انحجار الستجيات الجاعسة، وذلغ لمتشبؤ بالسداحة تحت مشحشى الحسل
وثسانؽن، وبمغ متؽسط الخطأ أظيخ نسؽذج تعديد التجرج أفزل أداء، حيث حقق معامل تحجيج قجره صفخ فاصل ثلاثة  .السادة

 .السطمق نحؽ تدعة وثلاثيؼ، يميو نسؽذج الغابة العذؽائية بسعامل تحجيج قجره صفخ فاصل تدعة وسبعؽن 

وأوضحت نتائج تحميل أىسية الخرائص أن الكدخ الحجسي للألياف، ونؽعيا وشكميا، بالإضافة إلى مقاومة 
وتؽفخ ىحه الجراسة أداة تشبؤية قؽية قائسة  .ديد متانة الخخسانة السدمحة بالأليافالانحشاء، تُعج مؼ أكثخ العؽامل تأثيخًا في تع

عمى البيانات لتقجيخ متانة الخخسانة السدمحة بالألياف اعتسادًا عمى الخرائص الفيديائية والسيكانيكية الخئيدة، كسا تقجم رؤى 
 .حة بالألياف في التطبيقات الإنذائية العسميةميسة لمسيشجسيؼ لمسداعجة في تحديؼ ترسيػ السؽاد السخكبة السدم

 .ة: الخخسانة السدمحة بالألياف، الخؽاص السيكانيكية، الستانة، التعمػ الآلي، نساذج الانحجارلجالالكمسات ا


