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Abstract

The mechanical performance of fiber-reinforced concrete (FRC), especially its flexural
strength and toughness measured by the load-deflection response, depends strongly on fiber
characteristics such as volume fraction, length, tensile strength, shape, and type. While extensive
research has explored these factors, much of it relies on idealized laboratory data, limiting
practical applicability. This study addresses this gap by using real-world FRC data to develop
predictive machine learning (ML) models that capture the combined influence of fiber and
concrete properties on toughness. A comprehensive dataset of 146 FRC samples compiled from
prior studies was analyzed. Four regression models—Random Forest (RF), Gradient Boosting
(GB), Linear Regression, and Support VVector Regression—were trained and evaluated to predict
the area under the load-deflection curve, a key indicator of toughness. The GB model achieved
the best performance, with a coefficient of determination (R?) of 0.83 and a mean absolute error
(MAE) of approximately 39, followed closely by RF (R2 = 0.79). Feature importance analysis
identified fiber volume fraction, fiber type and shape, and flexural strength as the most
influential factors in enhancing toughness. This research provides a robust, data-driven
predictive tool for estimating FRC toughness based on key physical and mechanical properties,
offering valuable insights for engineers to optimize fiber-reinforced composite designs in
practical structural applications.
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1. Introduction

Fiber-reinforced concrete (FRC) is widely used for its improved toughness, ductility, and
crack resistance over conventional concrete, typically assessed via load-deflection under flexural
loading. Key fiber characteristics affecting performance include volume fraction (Vf), length,
tensile strength, shape, and type. Vf strongly influences mechanical behavior; increasing Vf
enhances load capacity and toughness by improving crack bridging [[1]; [2]; [3]; [4]], but
excessive VT can reduce workability due to clumping [[5]]. [6] suggest 0.5-1.5% Vf as optimal,
with Garcia et al. [7] showing energy absorption rises up to a limit. Fiber length and aspect ratio
affect crack control and flexural performance. Longer fibers (20-35 mm) with higher aspect
ratios improve toughness [ [8]; [9]; [12]; [14]], though too long fibers reduce mix consistency
[[13]]. Tensile strength impacts crack resistance; strong fibers like steel and carbon boost
toughness [[15]; [16]], while basalt fibers offer strength and corrosion resistance [[5]; [2]].
Polypropylene mainly aids toughness and crack control [[6]]. Higher tensile strength correlates
with greater post-crack load capacity [Garcia et al. [7]]. Fiber geometry influences bonding:
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hooked and crimped fibers improve interlock and toughness [[8]; [12]], while fibrillated
polypropylene enhances ductility [[9]]. Fiber shape selection depends on desired mechanical
behavior. Fiber type affects performance: steel offers high flexural capacity [[15]; [16]], glass
fibers control cracks but may degrade [[13]; [4]], carbon provides high strength and stiffness
[Ahmed et al. [8]; Smith et al. [1]], and polypropylene is cost-effective and durable. [[6]; [9]],
and basalt combines durability and strength [[5]]. Flexural strength testing correlates with energy
absorption and toughness [[7]; [2]]. Optimizing fiber volume, shape, and length improves post-
crack behavior [[12]; [9]], though excessive fiber content reduces performance [[6]]. The area
under the load-deflection curve (AULDC) reflects ductility and toughness, increasing with high-
volume, strong, long, and interlocking fibers [[1]; [7]]. These enhance durability under impact or
cyclic loads [[13]; [16]].

Despite extensive research, many models rely on simplified lab data and limited variable
interaction. Several studies have noted that empirical and regression-based models for FRC are
commonly developed using controlled laboratory-scale datasets with narrow parameter ranges and
limited combinations of fiber and mix variables [[22]; [23]; [15]]. Real-world predictive tools are
lacking. Such laboratory-focused approaches often evaluate only one or two fiber parameters while
keeping other concrete properties constant, which limits the ability of these models to generalize to
heterogeneous, real-world FRC systems [[12]; [7]]. [18] applied machine learning (ML) to predict
compressive strength, with Gradient Boosting (GB) and Extreme Gradient Boosting (XGB)
performing best, influenced mostly by cement, water, and silica fume. Building on this, the
present study uses 146 real-world FRC samples and regression-based ML models to predict
AULDC, aiming to identify key variables fiber shape, type, Vf, tensile strength, and concrete
properties that govern toughness. This data-driven approach is intended to improve model
generalization and provide practical guidance for optimizing FRC performance.

2. Modeling Approach

A dataset of 146 fiber-reinforced concrete (FRC) samples was compiled from prior
studies [1-26] with data description shown in Table 1 containing input features such as fiber
shape, length, volume fraction (%Vf), aspect ratio (I/d), compressive strength, flexural strength,
fiber type, and tensile strength. The target variable was the area under the load-deflection curve
(AULDC). After removing entries with missing data, the dataset was split into training and
testing sets (86/14).

The samples were randomly assigned to the training and testing subsets using a fixed
random seed (random_state = 42) to ensure reproducibility and to avoid bias toward any specific
fiber type, strength level, or toughness range.
The ranges of all input variables in the testing set were verified to fall within the minimum and
maximum bounds of the training set, ensuring that no extrapolation beyond the learned feature
space was required during model evaluation.

Four regression models were developed: Linear Regression (LR), Random Forest (RF),
Gradient Boosting (GB), and Support Vector Regression (SVR). LR served as a baseline for
linear trends. RF and GB, implemented via scikit-learn, captured nonlinear interactions. RF used
n_estimators = 100 and max_depth = None, while GB used n_estimators = 100, learning_rate =

55



JOURNAL'S UNIVERSITY OF BABYLON FOR

ENGINEERING SCIENCES (JUBES)
Luigh pp— WU el nily

Vol. 33, No.6. \ 2025 ISSN: 2616 - 9916

0.1, and max_depth = 5. SVR employed kernel functions to address linear and nonlinear data
patterns. All models were trained and tested using the same data split to ensure a fair comparison
of predictive performance.

Table 1. Data Descriptions

Feature Name Description Unit
Fiber length (mm) | Length of the fiber used mm
%VT Fiber volume fraction %
I/d Aspect ratio (length/diameter) —
Compreggieg Compressive strength of concrete | MPa
strength
Flexural strength Flexural strength of concrete MPa
Type of fiber Categorical type (steel, ¢
polypropylene, etc.)
Q" ensile Strength of the fiber MPa
strength

Measured area related to failure 2
Area mm?2 or other
or response

3. Model Evaluation

The dataset was split into training and testing sets using an 86/14 ratio. This means 86%
of the data was used for training and 14% for testing. This split was chosen after trying different
options to make sure the model learns well but can still be tested on new data. This helps
improve the model’s accuracy and stability.

3.1 Random Forest’s vs Gradient Boosting's

Model performance was assessed using the coefficient of determination (R?), mean
squared error (MSE), and mean absolute error (MAE) on the test set. The RF model achieved an
R2 of 0.7907, indicating it explained approximately 79% of the variance in the target variable. Its
MSE and MAE were 2722 and 38.69, respectively. The GB model performed slightly better,
with an R? of 0.83, MSE of 2234, and MAE of 39.36, reflecting a reasonable prediction error
given the variability in the data.

3.2 Interpretation of Model Errors Relative to Target Scale

The target variable AULDC ranges from 9 to 494, with a mean of about 121. The RF and
GB models achieved MAEs of 38.7 and 39.4, respectively, meaning predictions deviate on
average by roughly 39 units, or 32% of the mean value. Despite strong R? scores (0.79 and 0.83),
this error magnitude indicates significant room for improvement through additional features,
model refinement, or further investigation.
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4. Results and discussion
4.1 Dataset Analysis and Model Prediction Results

The dataset comprises 146 FRC samples covering a broad range of fiber types,
geometries, and concrete strengths. As shown in Table 2, fiber length varies from 10 to 60 mm,
volume fraction (%Vf) from 0.1% to 2.0%, and fiber tensile strength from 55 to 2600 MPa. The
target variable, AULDC, ranges from 9 to 494 kN-mm.

Both Random Forest (RF) and Gradient Boosting (GB) models demonstrated strong
predictive capability for AULDC. GB achieved the highest accuracy (R? = 0.83), followed by RF
(R2 = 0.79). These results indicate that ensemble-based models are effective in capturing the
complex and nonlinear relationships governing FRC toughness, which cannot be adequately
represented using simple linear models. Linear regression showed limited predictive capability.

Feature-level analysis reveals that fiber shape and tensile strength play a dominant role in
post-crack toughness. This finding is consistent with experimental studies reported by [8] and
[12], which highlight the importance of mechanical anchorage and fiber pull-out resistance in
enhancing energy absorption. Hooked and crimped fibers exhibit higher predicted AULDC
values due to enhanced mechanical anchorage. Straight fibers generally result in lower
toughness, while synthetic fibers such as polypropylene and copolymer show greater variability.
This variability may be attributed to differences in elastic modulus and fiber—matrix bonding
mechanisms.

Nonlinear trends were observed between compressive strength, fiber tensile strength, and
AULDC. Polynomial regression provided a better fit for these parameters, suggesting
diminishing returns in toughness at higher strength levels. This observation aligns with [15],
who reported that increasing fiber strength beyond a threshold does not proportionally enhance
flexural performance. In contrast, fiber length and volume fraction displayed approximately
linear relationships with AULDC within the investigated range, supporting conclusions from[1]
and [12].

Table 2 statistical summary

Samples Mean St.D Min | Q25 | Media | Q75% | Max
% n
Fiber L 146 31.25 14.1 10 20 30 35.000 | 60.
(mm)
V% 146 0.88 0.41 0.1 0.5 1 1.200 2.0
L/D 146 45.14 28.17 0.0 | 38.18 50 65.000 | 159
C.S (MPa) 146 46.6 10.32 20 | 40.45 45 54.200 70
f. (MPa) 146 7.2 3.27 2.2 | 481 61 9.075 | 14.9
Fiber 146 1117.2 533.86 55 700 1100 | 1325.0 | 2600
f(MPa)
Area 146 120.98 102.06 9 27.1 114.4 | 185.85 | 494
(KN.mm) 0
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4.2 Relationship Between the Different Features and the Target Area Under
Load-Deflection Curves (AULDC)

In this study, the relationships between key features and the AULDC were explored using
both linear and second-degree polynomial regression. Linear regression, due to its
interpretability, serves as a conventional baseline; however, visual inspection and model fitting
revealed that some features demonstrated nonlinear behavior in relation to the target. [For
example, using polynomial regression gave better results for compressive strength and fiber
tensile strength. This means the relationship is not a straight line. When the compressive or
tensile strength gets very high, the increase in energy absorption becomes smaller. This agrees
with [15], who also found that using very strong fibers doesn't always lead to much better
flexural performance. Conversely, for features like fiber length and V%, the linear fit proved
adequate, supporting results from [12] and [1], who reported that these properties exhibit more
predictable, proportional effects on toughness up to an optimal range. The results in Figures 1-8
show that the relationship between the input features and FRC toughness is not always straight.
This means we need to consider possible non-linear patterns when building the model.

4.3 Model Evaluation and Comparison with Literature

Gradient boosting emerged as the best-performing model (R? = 0.83, MAE = 39.4, MSE
= 2234), followed by random forest (R2 = 0.79, MAE = 38.7, MSE = 2722). These results align
with previous studies (e.g., [22]; [23]) that demonstrate ensemble models’ ability to capture
complex material behavior more effectively than linear approaches. However, the MAE is still
quite high—about 32% of the average AULDC, which was calculated by dividing the MAE by
the average AULDC (39.4 / 121). This might be okay for early testing or basic analysis, but this
error might be too large if we want to use the model to decide things like the best fiber type or
amount to use in real concrete designs. To make better decisions, the model should be improved
or more data should be added.

One limitation of this study is that | did not adjust the model settings (called
hyperparameter tuning), such as tree depth or learning rate. | kept all model settings at their
default values to make a fair comparison across different algorithms. In future work, using tuning
methods like grid search or cross-validation may help improve the model's accuracy and
generalization.
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Linear Fit: shape of fiber vs Area

Polynomial Fit: shape of fiber vs Area
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Fig. 1 Relationship between fiber shape and AULDC with both linear and nonlinear fits.
Fiber shape codes: 0 = straight, 1 = corrugated, 2 = hooked, 3 = fibrillated polypropylene
(PP).
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Fig. 2 Relation between fiber type and area for both of the two figures with linear and
nonlinear fits. In which, (4=steel, 5=PP, 6=glass, 7=carbon, 8=basalt, 9=twisted steel)
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Fig. 3 Relation between fiber length and area for both of the two figures with linear and
nonlinear fits.
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500 1 [ ] ® Data 500 ] ® Data
Linear Fit Polynomial Fit
R® = 0.059 T R*=0.084
Ld -
400 . 400 ™
L ]

g
100
o
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Fig. 5 Relation between L/D and area for both of the two figures with linear and nonlinear
fits.
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Fig. 6 Relation between compressive strength and area for both of the two figures with
linear and nonlinear fits.
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Linear Fit: flexural strength vs Area Polynomial Fit: flexural strength vs Area
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Fig. 7 Relation between flexural strength and area for both of the two figures with linear
and nonlinear fits.
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Fig. 8 Relation between fiber tensile strength and area for both of the two figures with
linear and nonlinear fits.

Conclusion

This study applied machine learning regression techniques to predict the flexural
toughness of fiber-reinforced concrete, quantified by the area under the load—deflection curve
(AULDC), using a dataset compiled from multiple experimental sources. Ensemble-based
models—particularly Gradient Boosting and Random Forest—demonstrated superior
performance compared to linear regression, confirming the inherently nonlinear nature of FRC
post-crack behavior.

The results highlight the critical influence of fiber shape, volume fraction, tensile
strength, and aspect ratio on toughness development. Hooked and crimped fibers consistently
produced higher energy absorption due to improved mechanical anchorage, while diminishing
returns were observed at high strength levels, consistent with prior experimental findings.
Although the GB model achieved the highest predictive accuracy (R? = 0.83), the relatively high
MAE, indicating moderate accuracy acc

Compared to traditional empirical models derived from controlled laboratory data, the
proposed ML approach offers improved generalization across diverse FRC systems but requires
further refinement. Future work should focus on expanding the dataset, incorporating additional
variables related to mix design and curing conditions, and applying systematic hyperparameter
optimization and cross-validation to enhance model robustness and practical applicability.
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