
Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1618

Adapted LZW Protocol for
 ECG Data Compression

Saif M. Kh. Al-alak I. H. Alwan Ahmed A. Hussein

saif.shareefy@gmail.com isr.phd@gmail.com aahussein38@gmail.com

Babylon University, College of science for women, Dept. of Computer science

Abstract
Lempel–Ziv–Welch (LZW) is a data compression method, which is adopted by many applications

likes Electrocardiography (ECG) data to reduce the size of transferred data. Because of the ECG data

moves over the network all the time, which means there is a need to reduce its size to improve the

network performance. In this paper, we concerned with the LZW method, which is one of the important

and famous data compression method. We propose a protocol to improve the way in which the LZW

saving an index for the compressed data. The proposed protocol could reduce the size of the index in

LZW method. Five samples data groups provided by Physionet are used for evaluation. The

experimental result shows that the proposed protocol can give best compression ratio compared with

the original method.

Keyword: LZW,ECG ,Data Compression, Useless compression

 الخلاصة
(هي واحدة من طرق ضغط البيانات المستخدمة في عدة تطبيقات كضغط بيانات تخطيط القمب الكهربائي) LZWخوارزمية الـ)

ECGلتقميل حجمها مما يسهل عممية نقمها عبر الشبكة. بما ان) (بيانات الـECG الخاصة بالمرضى تنقل عبر الشبكة طول الوقت)
 نحن نهتم بطريقة الـ البحثلقاعدة البيانات. في هذه ا بالسرعة الممكنةلذلك ظهرت الحاجة الى تقميل حجمها من اجل ضمان وصوله

(LZW(التي هي واحدة من اهم واشهر طرق ضغط البيانات وقد اقترحنا بروتوكول لتحسين الطريقة التي تعتمدها خوارزمية الـ)LZW)
(. تم اعتماد LZWيقمل حجم المؤشر لخوارزمية الـ)في خزن المؤشرات الخاصة بالبيانات المضغوطة. البروتوكول المقترح يمكن ان

(لغرض اختبار البروتوكول المقترح. وقد اظهرت نتائج الاختبارت Physionetخمس عينات اخذت من بنك المعمومات الخاص بـ)
 (الاصمية.LZW(مقارنة بطريقة الـ)ECGالعممية ان البروتوكول المقترح يعطي نسبة ضغط افضل لبيانات الـ)

 .,ضغط البيانات ,الضغط بدون فقدانLZW, ECGالكممات المفتاحيه :
1. Introduction

An ECG signals provide information about the electrical heart activity such as

heart rate, rhythm and coprology which help the specialist to diagnostic any

abnormality with the heart. Due to the vast ECG signal size and bounded of the

network bandwidth, Compression technology is a practical solution while considering

remote person identification and patient monitoring. Regular ECG signal

implementation is restricted by the huge data storage requirement. Therefore, it can be

clearly to notice that compressing the ECG signal is far more efficient when

transmission and storage is contemplated [Iqbal, 2015].

All sorts of data stored on computer systems, or transferred via communication

channels usually contain some sort of redundancy. Reducing the amount of

redundancy would lead to a better storage utilization and faster data transfer.

Different compression techniques for lossy and lossless data are available now. Due

to the requirement of the ECG signal that have to preserve the exact signal for the

diagnostic purpose, the signal before the compression should be exactly similar to the

signal after the decompressed. For this only lossless techniques will be acceptable.

However the lossy compression techniques will damage some details [Mathur, 2013;

Salomon, 2005].

mailto:saif.shareefy@gmail.com
mailto:isr.phd@gmail.com
mailto:aahussein38@gmail.com

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1619

Conceptually, the lossless techniques are working through detecting and

eliminating the redundant data that will be exist in the ECG signal. There are three

reasons beyond using compression techniques for the ECG signals,

(i) To do more comparison and assessment for the ECG’s as database, its size

need to be growth.

(ii) Achieving the economic used of the wired or wireless network by

transmission a compressed data.

(iii)Asking the doctor help for serious case form home or ambulance will be very

useful [Mathur, 2013; Deorowicz, 2003].

LZW method is one of the important and famous data compression methods. It is

a Dictionary-based coding technique that is particularly suitable for compressing

digital data types. Typically, redundancy in digital data appears in the form of

common digits, which repeat quite often. We propose a protocol for this method to

perform a compressing for digital data especially ECG signal.

Dhar et.al. present an effective compression technique that depends on eliminating

the high frequency and power line influence noise from the ECG signal by using the

low pass filter and IIR notch filter respectively. Then strict lossless compression

method has been applied on the enhance signal [Dhar et. al., 2014]. Butta presents a

lossless method that depend on a modified American standard code for information

Interchange (ASCII) character encoding for ECG data compression. This method

contain four parts which are algorithm comprising sign count; generation of array

representing ECG sample’s signs (+ve, -ve alternatively), adaptive amplification

factor; and grouping method of ECG samples and a reverse process for ECG

reconstruction [Singh et. al., 2014].

In [Chang and Lin, 2010] an improved lossless algorithm for ECG signal has been

presented by Gwo-Ching. The proposed method is depend on delta coding and

optimal selective Huffman coding. Since the ECG signal rang is huge, delta code is

used to reduce it. Also to improve the computation efficiency of canonical Huffman

coding, optimal selective of Huffman code has been used.

Finally, Kumar presents a compression method for ECG signals that depends on

beta wavelet using lossless encoding technique. The wavelet filter is used to reduce

the compression distortion and to get more compression without any loss in the ECG

signal, the run-length coding has been used [Kumar et. al., 2013].

The proposed protocol focuses on how the indices of strings are stored in

Dictionary-table. In original LZW, each index was stored as a block regardless of its

exact needs to be represented in terms of bits. The proposed protocol stores each

index in perfect size. We proved that the proposed protocol for LZW increases a

compression ratio in compare to the original LZW method. The remainder of the

paper is organized as follows: section (2) describes the old LZW method then section

(3) shows the main problem in the old method. Section (4) presents the proposed

method. Finally in section (5), the experimental results have been presented and

concluded in section(6).

2. The LZW Compression Method

In the LZW algorithm the scenario has two processes, which are compressor and

de-compressor. Compressor process reads the input byte by byte and adds them as a

string of bytes (I). The compressor searches for string (I) in a dictionary. While the

string (I) is found in the dictionary, the compressor reads new byte (a) and adds it to

string (I), it will repeat the operation until it fails to find the string (Ia) in the

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1620

dictionary. When string (Ia) is not in the dictionary, the compressor produces a

dictionary index that points to string (I) in dictionary [Perez et.al., 2005]. It stores

string (Ia) as a dictionary entry in a next available place of dictionary and initialize the

string (I) to byte (a). LZW algorithm is shown below: (λ denote the empty string, and

<<a,b>> the concatenation of strings a and b)

/* set the table with all ASCII code strings */

Initialize dictionary-table with 1-symbol string for bytes from 0 to 255

Append λ to the dictionary;

Set a code to dictionary index of λ; /* refer to empty string in table */

Do while more Input

 Input 1-byte (ch) /* one byte input */

 /* check when string stored in table at code value index with character of ch

if exist in dictionary */

 If concatenation of (code) and (ch) is in dictionary-table

 Set code to dictionary index of << code, ch>>

 Otherwise

 Output (code);

 Append << code,ch>> to the dictionary;

 Set code to dictionary index of ch;

 End if

Moreover, in LZW compression the string of bytes is replaced with single

code. The incoming bytes are just read without any analysis, and a new string of bytes

is added to a table of strings. Compression is happen when a single code is replaced

for a string of bytes [Nelson,1989]. The compression algorithm is based on a

dictionary table that initially contains only the codeword for single bytes. For

example, if the input is a 4-array numbers ∑ = {10, 20, 30, 40}, the initial table would

be as shown in Table 1.

Table 1 the initial dictionary table

It is clear that the LZW compression algorithm increases the size of table by

adding a new encountered string of bytes. It matches the input bytes to the already

saved dictionary’s strings of bytes. New strings are inserted to the table by adding one

new byte to a previous string of bytes [Pfingsthorn and Liebald, 2003]. When a string

is coded, its codeword is equal to its dictionary index. An example is a sequence

10,20,20,10,20,30,30,30,40,20,10. The input sequence is coded to 1 2 2 5 3 9 4 7 by

using the compression steps shown in figure 1(a). The dictionary table for this

example will show in Table 2.

Input Bytes 10 20 30 40

Codeword 1 2 3 4

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1621

In the decompressing state, the de-compressor process reads the codes and

searches them in the dictionary table. The output in the decompression operation is

the strings from the dictionary table instead of their indices as illustrated in figure

2.1(b) [Pfingsthorn, 2003, Shibata, 2003]. The dictionary table of the LZW algorithm

is built during compression and decompression operation and it is not saved in the

compressed data. Furthermore, the dictionary table is initiated with single byte code in

compression and decompression operation. The other codes are added when bytes are

input. Moreover, compression and decompression are work in similar way. In

compression operation, the algorithm reads the bytes and produces the dictionary

table. In decompression operation, the algorithm reads the code and reproduces the

same dictionary table.

Figure 1 Example for compression and decompression with LZW

Table 2 the dictionary-table for sequence 10,20,20,10,20,30,30,30,40,20,10

The decompression algorithm is as following: (λ denote the empty string, and

<<a,b>> the concatenation of strings a and b)

Initialize dictionary-table with 1-symbol string for bytes from 0 to 255

 Input (old_code);

 Output (old_code);

 Set ch to (old_code);

 While more code input

 Input (new_code)

 If new_code is not in dictionary_table then

 Set ST to string of (old_code)

Symbols 10 20 30 40 10,20 20,20 20,10 10,20,30 30,30 30,30,40 40,20

Codeword 1 2 3 4 5 6 7 8 9 10 11

(a) Compression (b) Decompression

Input

data

10 20 20 10,20 30 30,30 40 20,10

Output

codes

1 2 2 5 3 9 4 7

10,20=5, 20,20=6, 20,10=7, 10,20,30=8, 30,30=9,

30,30,40=10, 40,20=11

Strings add to dictionary table

10,20=5, 20,20=6, 20,10=7, 10,20,30=8, 30,30=9,

30,30,40=10, 40,20=11

Strings add to dictionary table

Input

codes

1 2 2 5 3 9 4 7

Output

data

10 20 20 10,20 30 30,30 40 20,10

Strings add to dictionary table

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1622

 Set ST to << ST,ch>>

 Otherwise

 Set ST to string of (new_code)

 endif

 Output (ST)

 Set (ch) to first character of (ST)

 Append <<old_code,ch>> to dictionary-table

 Set (old_code) to (new_code)

3. The main problem in the original LZW
In the LZW compression, the size of produced codes (indices) that is the real

compressed data is not equivalent. Furthermore, the index could be one or more byte

in terms of size. Each index is saved in the produced compress data as a fixed size

block (not with its specific size). They are stored as blocks of data that are with the

same size. Some programmer makes the block size two bytes and that may not be

enough for large size index. Most other makes the block size three or four bytes.

However, some indices need one, two, three or more bytes to be saved. This way

leads to loss some bytes for index saving. When the index is stored in its exact size, it

would be difficult to distinguish among them, at the decompressor side. In this paper,

we develop a protocol for the LZW algorithm where it becomes possible to store each

index in its exact size.

4. Proposed Protocol
The proposed protocol classifies the codes (indices) that are received from LZW

scheme according to its length into classes (A, B, C…). The length of index belong to

class A is 1-byte, class B is 2-byte and so on as shown in table 4-1. In the

compressing process, the Left Most Significant Bit (MSB) of index is set to zero for

class A as illustrated in figure 3. The other seven bits could be zero or one. In the

decompressing process, the index of class A is distinguished when its LSB is zero.

Table 3 index classifications of LZW scheme
Index class Index length/byte

A 1

B 2

C 3

D 4

.

.

.

.

.

.

Figure 3 LZW Index of class A

× × × × × × × 0

× refers to 1 or 0

LSB: Left Significant Bit

LSB

(i)

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1623

 The index of class B has 2-byte size. In the compressing process, the MSB (i)

is set to one, and bit (i-1) is set to zero as illustrated in figure 4. In the decompressing

process, the index of class B is distinguished when the MSB is one followed by zero.

For index of type class C, the MSB must be one followed by one then zero. In

general, the length of index can be computed by a set of ones followed by zero as

pointed in equation 1.

Index_length = 9 – i Eq. 1

where (i) location of bit set to

zero

bit (i) = 0 index-length : no. of byte

bit (j) = 1 , 9 > j > i

Figure 4 LZW index class B (2-byte)

The using of the proposed protocol for LZW algorithm made the index of

codeword should belong to one of the classes. It could of class (A, B, C…) as

illustrated in table 4. Moreover, each index of codeword is classified by computing

the position of bit (i) as pointed in equation 1.

Table 4 LZW index
Index

Class
First Byte

A
0 × × × × × × ×

B
1 0 × × × × × ×

C
1 1 0 × × × × ×

D
1 1 1 0 × × × ×

E
1 1 1 1 0 × × ×

The proposed protocol for LZW algorithm would change the shape of the

original algorithm as following:

Variables:

 λ: empty string

 ch: 1-byte

 ST: string of bytes

 code, old_code and new_code: integer value

 dictionary-table: dynamic array

the symbol × equals to zero or one

× × × × × × × × × 1 0 × × × × ×

1 8 7 6 5 4 2 3 1 8 7 6 5 4 2 3
Bit number

Bit value
(i)

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1624

A-Compression

Initialize dictionary-table with 1-symbol string for bytes from 0 to 255

Append λ to the dictionary

Set (code) to dictionary index of λ

Do while more input

 Input (ch)

 If << code,ch>> is in the dictionary then

 Set (code) to dictionary index of << code,ch>>

 Otherwise

 Classify (code) according to its length

 Output (code)

 Append << code,ch>> to the dictionary

 Set (code) to dictionary index of ch

 End if

B-Decompression

Initialize dictionary-table with 1-symbol string for bytes from 0 to 255

Input (old_code);

Output (old_code);

Set (ch) to (old_code);

While more input

Input (new_code)

Classify (new_code)

 If (new_code) is not in dictionary

 Set (ST) to string of (old_code)

 Concatenate (ST) with (ch)

 Otherwise

 Set (ST) to string of (new_code)

 End if

 Output (ST);

 Set (ch) to first character of (ST);

 Add <<old_code,ch>> to dictionary-table

 Set (old_code) to new_code;

5. Evaluation
The data samples of human ECG were used to compare the mean of

compression ratio between the old and the new methods. Compression ratio CR is

calculated by dividing the uncompressed size US by the compressed size CS. Five

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1625

sample data groups provided by Physionet were used for evaluation [Goldberger,

2010]. Explanation of the data groups is as follows:

OB-1 database contain a set of recordings of fetal scalp Electrograms and uterine

muscular activity, with beat-by-beat annotations of the fetal ECG, to support studies

of fetal heart rate variability. ANSI/AAMI EC13 Test Waveforms. These 10 short

recordings are specified by the current American National Standard for testing various

devices that measure heart rate where each recording contains one ECG signal.

Paroxysmal or sustained atrial fibrillation database includes long-term ECG

recordings of subjects with paroxysmal or sustained fibrillation (AF). MGH/MF

Waveform Database. This is a collection of 250 recordings of 3-lead ECGs, ABP,

PAP, CVP, respiration, and airway CO2 signals from patients in critical care units;

some recordings include intra-cranial, left atrial, ventricular and intra-aortic pressure

waveforms. Finally, Prediction Challenge Database (PAF), it consists of 100 record

sets, each including a pair of 30-minute excerpts from a long-term ECG recording.

In each sample data group, 10 samples were used. Each sample group contains

ECG data of fixed period. The results are shown in Table 5

Table 5

Database Old-LZW New-LZW

OB-1 0.693945 0.594902

ANSI/AAMI EC13 0.775 0.604864

AF-long 0.600977 0.51388

MGH/MF 0.685352 0.618262

PAF 0.867773 0.758926

The results in Table 1 show that the presented technique has the highest

compression ratio than the old one. Table 6 shows the mean compression ratio of the

new and old compression algorithm, which are 0.68, 0.72 respectively.

Table 6

Old-LZW 0.72

NEW-LZW 0.61

Also, the proposed research shows that it is high in objectivity because five

types of databases are used instead of just one or two, like in other related researches.

6. Conclusions
The LZW compression algorithm is adopted for many applications. The ECG data

could be compressed by the LZW algorithm where the ration of data compression

depends on the nature of data or the redundant of bytes. The LZW compresses the

ECG data as blocks of codeword (index) and this leads to decrease the compression

ratio.

Moreover the proposed protocol for ECG data compression improves the LZW

algorithm and enables the LZW to compress the codeword in perfect size. The

proposed protocol deals with dynamic block rather than fixed block codeword. In

compare with the original LZW algorithm, the experimental result of ECG data

compression shows that the proposed protocol for LZW scheme increases the

compression rate.

Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

1626

References
-Brisaboa N.R., Fariña A., Navarro G., and José R., “Simple, Fast, and Efficient

Natural Language Adaptive Compression”, 11th International Conference, SPIRE

2004, Padova, Italy, October 5-8, 2004, Springer Science + Business Media, Inc,

2005.

- Chang G.C, Lin Y.D. “An Efficient Lossless ECG Compression Method Using

Delta Coding and Optimal Selective Huffman Coding” IFMBE proceedings 2010,

Volume 31, Part 6, 1327-1330

-Deorowicz S., “Universal lossless data compression algorithms”, Doctor of

Philosophy Dissertation, Supervisor: Prof. dr hab. inz. Zbigniew J. Czech,

Silesian University of Technology, Faculty of Automatic Control, Electronics and

Computer Science, Institute of Computer Science, 2003.

- Dhar, S.; Mukhopadhyay, S.K.; Mitra, S.; Baig, M.M.; Mitra, M., "Noise reduction

and lossless ECG encoding," in Control, Instrumentation, Energy and

Communication (CIEC), 2014 International Conference on , vol., no., pp.210-

213, Jan. 31 2014-Feb. 2 2014.

- Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M.,Ivanov, P. C., Mark,

R. G., Mietus, J. E., Moody, G. B., Peng, C.-K.,and Stanley, H. E., PhysioBank,

PhysioToolkit, and PhysioNet: Components of a New Research Resource for

Complex Physiologic Signals. Circulation 101(23):e215–e220, 2010.

doi:10.1161/01.CIR.101.23.e215.

- Iqbal F. and Sidek K. A., "Compressed ECG Biometric Using Cardioid Graph

Based Feature Extraction", ARPN Journal of Engineering and Applied Sciences,

vol. 10, no. 22, pp. 17219-17224, 2015.

- Kumar R., Kumar A. and Pandey R.K., "Beta wavelet based ECG signal

compression using lossless encoding with modified thresholding" Computer and

Electrical Engineering, vol. 39, no. 1, pp. 130-140, 2013

- Mathur M. K. , Garg A. K. , Upadhayay M., “ Application of LZW Technique for

ECG Data Compression”, International Journal of Advances in Computer

Networks and its Security, 2013.

- Nelson M., ’’LZW Data Compression’’, 1989, available at:

http:/www.dogma.net/markn/articles/lzw/lzw.htm

-Pérez A.C., Uribe C.F., and Navarro G. “Approximate Searching on Compressed

Text”, Proceedings of the 15th International Conference on Electronics,

Communications and Computers (CONIELECOMP 2005) 0-7695-2283-1/05

IEEE 2005.

 -Pfingsthorn M. and Liebald B., “On the LZW compression algorithm”, November

15th , 2003, available at: http:/www.catenary.com/appnotes/lzwcomp.html

-Singh B., Sharma D., Singh M. and Singh D. 2014. “An improved ASCII character

encoding method for lossless ECG compression”. Advances in Biomedical

Science and Eng., 1(2), 1-11.

- Salomon D., ’’A Guide to Data Compression Methods’’, Springer, 2002.

-Shibata Y., Kida T., Fukamachi S., Takeda M., Shinohara A., Shinohara T., and

Arikawa S., “Speeding Up Pattern Matching by Text Compression”, CIAC2000,

LNCS 1767, pp. 306-315, Springer-Verlag Berlin Heidelberg 2000.

