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Abstract

In this paper we presented a new way based on neural network has been
developed for solutione of two dimension partial differential equations . A
modified neural network use to over passing the Disadvantages of LM algorithm,
in the beginning we suggest signaler value decompositions of Jacobin matrix (J)
and inverse of Jacobin matrix( J), if J(w) is a matrix rectangular or singular .
Secondly, we suggest new calculation of px , that ispk=|| E (w)|]2 .look the
nonlinear execution equations E(w) = 0 has not empty solution W* and we refer
Il to the second norm in all cases ,whereE(w): R™ - R™ is continuously
differentiable and E(x) is Lipeschitz continuous, that is=|| E(w 2)- E(w,)||< L|| w »-
w 4| ,where L is Lipeschitz constant.

1. Introduction

We have been many methods developed so far to solve differential equations.
a few of them generate a result in the type of an range that contain the value of
the result at a chosen grouping of points. The result in analytic type and make
over the novel problem generally in a system of linear equations. the majority of
the preceding work in solving differential equations using Nearul networks is
constrained to the case. The result of a linear structure of equations is mapped
onto the manner of a Hopfield Neural network. The decreasing of the network’s
force function provide the solution to the structure of equations.

Here object we outlook the problem from a special angle. We at in attendance
a universal manner for solve partial differential equations (PDEs), that depends
on function approximate capability of feedforword Nearul networks and outcome
in the configuration of a solutione write in a differentiable, near exact form. This
figure employ a feedforword nearul network as the basic approximate element,
whose parameters’ (weights and biases) are use to decreasing an suitable error
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function. in the direction of teach the network we use optimization technique,
which in twirl want the calculation of the grade of the error with value to the
network parameters. In the projected move toward the mold function is
articulated as the sum of two requisites: the first part satisfy the initial /
boundary conditions and contain no modifiable parameters’. The second part
involve a feedforward nearul network to be train so as to suit the differential
equation by Lee, H. & Kang, 1.,1990 , Wang, L. & Mendel J.M.,1990 and Yentis,
R. and Zaghoul, M.E.,1996.

2. Levnberg-Marquardt algorithm (LM)

The algorithm of Levnberg-Marquardt (LM) is an purified procedure that
locate the least of a more than variable function that is uttered as the sum of
squares of non-linear real-valued functions by K. Levenberg ,1994 and D.W.
Marquardt ,1963.I1t has happen to a typical procedure for non-linear least-
squares problems, extensively adopt in a wide range of discipline.

For LM algorithm, the performance index to be optimized is defined by H.D.
Mittelmann ,2004

Ew) =XYp_4[ II§=1(dKP — Okp)?] .

Where w = [w; w; .......wy] consistes of all weights of the network, d,, is the

desired value of the k" output and the p*"pattern, o,, is the actual value of
the k" output and the p®" pattern, N is the number of the weights, P is the
number of pattern, and K is the number of the network output .

Equation (1) can be written its

E(w) =ETE (2) .
WheI'e E = [811 . eKlelz . eKZ e s elp ee er]
ekp:dkp—Okp k:1,,K p:1, ......... ,P
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Where E is the cumulative error vector ( for all pattern) from equeation (2) the

'8@1’1 851’1 661’1'
awy, dw, T dwy
652’1 682‘1 882’1
ow; dw, T dwpy
3ek‘1 3ek‘1 BEk‘l
. . L. . ow,; dw, T dwy
jacobian matrix is define as= | -
aellp 6ellp ael'p
ow; dw, T dwy
662'1, aezyp aez‘p
ow; dw, T dwy
aek_p 6ek‘p aek‘p
L ow; ow, T Awy
(3) .
And the weights are calculated using the following equation
Weer = We — (JET ) TYUE (4)
t+1 t tJt tht .

Where I is identite unit matrix,u is the learing parameter and J is jacobian of m
output error with respect to n weights of the Neural network. The u parameter is
automatically adjusted at each iteration in order to secure convergence, the LM
algorithm requires computation of the jacobian] matrix at each iteration step
and the inversion of /7] square matrix, the dimension of which is N*N by B. M.
wilamowski and S. Iplikei ,2001.

3. Modification Of High Performance Training Algorithms:

In this part we will improve the training algorithm LM by overcoming some
of the disadvantages that have emerged in the LM standard training algorithm, in
the beginning we suggest singalur value decompositions of Jacobin matrix (J)
and inverse of Jacobin matrix( J-), if J(w) is a matrix rectangular or singular and
secondly we suggest new calculation of parameter px that ispk=||E(w)|[2 and we
refer ||| to the second norm in all cases ,whereE(w): R™ —» R™ is
continuously dif ferentiable and E(x) is Lipeschitz continuous, thatis ||E(w 2)-
E(w 1)||<L|jw2-w1|| , where L is Lipeschitz constant.

4. Illustration of the Method
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We will consider a two - dimensional of partial defferential equeation
(P.D.E).

0*W(x, y) _ ,0¥(x, y) o¥(x, y) 9*¥(x, y) 0*¥(x, y)
Toaxz f( ax ' oy 1 oy? ' 9xoy X%Y) (5)

, belongs to the closed period 0 and 1 with Direchlet B C:

“‘P((ij‘)f fo(y)W(1,y)=f1(y)¥ (x, 0= go(x)and ¥ (x,1) =
g1\x

,where fy, fi1,90 and g, are continuous function . The trial solutione is written
as

Pi(x,y) = A(x,y) + x(1 - x) y(1 - y) N(x,,y, p) (6)
where A(x ,y) is chosen so as to satisfy the BC, namely:

Alx,y) = (1 - x)fo MW+xfi+ A - )’){go (x0)-[(1 = x)go (0) +
xgo DI} + ¥{g1 () - [(1 = x) g1 (0) +xg; (D]} 6) .

For mixed boundary conditions of the form:

Y(0,y) = o), ¥1,y) = f1(¥), ¥(x,0) = go (x) and (0¥ (x,1)/9y) = g1l(x)
(i.e., Dirichlet on part of the boundary and Neumann elsewhere), the trial
solutione can be written as

ON(x,1,p)
ay

e (x,y) = B(x,y) + x(1 = )y[N(x,y,p) = N(x,1,p) — [ 1. @

And B(x,y) is again chosen so as to satisfy the BC's:
Bx,y)= 1 — )foe()+ x i(y) + go()-[(1 — x)go(0) + xgo(1)]
+ y{g1()-[(1 — x)g1(0) + xg1(D)]} )

Note that the second term of the trial solutione does not affect the boundary
conditions .

In all the above PDE problems the error that should be minimized is given by:

o vn (0PP(y) | PW(xy) L (0P(xy) 0¥ (xy)
E[p]— i=1{ x> + dy? f( ox ' oy ,x,y) 9

Where(x;, y;) are points in [0,1] x [0,1] .

5. Numerical examples

In this section we reporte some numerical result and the solution of two
model problems. In all cases we used a multi layer FFNN having one hiden layer
with 7 hidden units (neurons) and one linear output unit. The sigmoid activation

of each hidden unit is logsig that is o(x) = L For each test problem the

1+eX
analytic solutione W,(x) was known in advance. Therefore we test the accureacy
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of the obtained solutions by computing the deviation AW¥(X) = |¥,(X) — ¥, (X) |
(10)

Example 1:

Consider the following 2nd order of two-dimensional of partial defferential
equeation for the function  V?W¥(x,y) = (2—n?y?)sin(mx) with x,y € [0,1] and
BC’s (Mixed case)

Y(00,y) =0, Y(1,y) =0 ,¥(x0) = O,aiylll(x, 1) = 2sin(mx), the equeation has

the analytic solutione W, (x,y) = y?sin(mx) by Abdul-Majid Wazwaz , 2009.
The network treale use a net of ten equidistant points in x€[o0,1] , y€[o0,1] .
Figure (1) expand the analytic and nearul solutions activation functions. The
neural results with f activation functions with modify Levnberg-Marquardt
algorithmic rule (trainmlm) introduced in Table (1) , In table (2) Accurace of
solutions, execution of the trail with period and time insert in table (3) and table

(4) gave the parameter of initial values.

Table 1: Exact and Approximate solutione of example

Exact Out of propose FFNN yt(x)for modify of LM
input and stander

X y Y, (%) Modify Trainlm Trainlm(Standard)
0.0 0.0 0 —0.00202206927449109 3.10855168354629e — 05
0.1 0.1 0.00309016994374900 0.00138905123743776 0.00297032870364780
0.2 0.2 0.0235114100916989 0.0235114100916989 0.0237062214932224
0.3 0.3 0.0728115294937453 0.0728115294937454 0.0726212142017721
0.4 0.4 0.152169042607225 0.152169042607225 0.152314664724119
0.5 0.5 0.250000000000000 0.250000000000000 0.249894950885798
0.6 0.6 0.342380345866255 0.342380345866255 0.342452052996387
0.7 0.7 0.396418327243724 0.396418327243724 0.396380079895659
0.8 0.8 0.376182561467183 0.366268424395609 0.376193022157707
0.9 0.9 0.250303765443707 0.218693601738362 0.291730607114354
1.0 1.0 1.22464679914735e — 16 | 1.98050739430218e — 16 0.201043695741907
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Table 2 : Accurace of solutions for example

The error AY(X)

= |¥,. (%) — ¥, (%)| where ¥,(X) approximate values

Modify of Im Trainlm(Standard)
0.00202206927449109 3.10855168354629¢ — 05
0.00170111870631171 0.000119841240101675

3.46944695195361e — 18 0.000194811401523508
5.55111512312578e — 17 0.000190315291973248
2.77555756156289%¢ — 17 0.000145622116893923
5.55111512312578e — 17 0.000105049114202144

0 7.17071301321037e — 05

0 3.82473480647905e — 05

0.00991413707157351 1.04606905236282e — 05
0.0316101637053458 0.0414268416706468
7.55860595154824e — 17 0.201043695741907

Table 3: execution of the trail with period

Function Pereformance of teach | period | Time MSE
Modify of Train Im 1.18¢ — 33 16 | 0:00:00 | 00#068302142285¢
Trainblm(Standard) 1.43e — 8 869 0:00:11 | 0.003830443569392

Table 4 : weight and bias of initial values for modify Lm teaching algorethm

initial values for trainlm (modify)

Net.IW{1,1] Net.1U{1,1 Net. LW{2,1 Net. B{1}
0.3507 0.9390 0.8443 0.4357
0.8759 0.5502 0.1948 0.3111
0.6225 0.5870 0.2259 0.9234
0.2077 0.3012 0.1707 0.4302
0.4709 0.2305 0.2277 0.1848

initial values for trainlm (Standard)

Net.IW{1,1] Net.I1U{1,1] Net. LW{2,1 Net. B{1}
0.2242 0.6525 0.8416 0.2653
0.6050 0.3872 0.7342 0.9246
0.1422 0.0251 0.5710 0.2238
0.4211 0.1841 0.1769 0.3736
0.7258 0.3704 0.9574 0.0875
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Figure 1:exacat and approximatsolution of example1 using : modify trainlm and
stander trainlm algorithms

Example 2:

Consider the following 2nd order of two-dimensional of partial defferential

equeation for the function
ax+ 4 2
VW (x,y)=e 5 {——a x—§+2a]cos(a2x2+y)

a?
— — 1 —4a%x? + —|sin(a’x* + y)}
25
witha = 3,x,y € [0,1] and BC’s (Direchlet case)

aty
lP(O y)=e s sm(y) Y(1,y) =e s sin(a?+7y),¥P(x0) =
ax+1
e’s sm(a x?),¥(x,1) = e 5 sin(a®x? + 1), the equeation has the analytic
ax+

solutione W, (x,y) = e 5 sin(a?x? + y).) by Abdul-Majid Wazwaz , 2009.

The network treale use a gridiron of ten points and the difference between
points is equal. Figure (2) expand the analytic and nearul solutions activation
functions. The neural results with f activation functions with modify Levnberg-
Marquardt algorithmic rule (trainmlm) introduced in Table (5) , In table (6)
Accurace of solutions, execution of the trail with period and time insert in table
(7) and table (8) gave the parameter of initial values.
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Table 5: Analytic and Nearul solutione of example

Exact solution

Out of propose FFNN yt(x)for modify of

input and stander
X y Y, (%) Modify Trainlm | Trainlm(Standard)
0.0 0.0 0 0 0
0.1 0.1 0.204588398543426 0.204588398567885 0.200895773658833
0.2 0.2 0.623352777780964 0.623352777790694 0.598329868276009
0.3 0.3 1.138656193114760 1.138609685746877 1.138656164886924
0.4 0.4 1.327527748349300 1.327527748359200 1.327527775936198
0.5 0.5 0.569371294069937 0.569371294067855 0.906499362901860
0.6 0.6 —1.039133807675550 | —1.039133807695874 —1.175970379137568
0.7 0.7 —1.614100223368030 | —1.614100223378600 —1.614768239056286
0.8 0.8 0.518294939421891 0.518289600564874 0.887352778509732
0.9 0.9 1.939539059282460 1.939539059749785 1.936573987243657
1.0 1.0 —1.210741248248230 | —1.210741247676904 —1.210741248248875

Table 6 : Accurace

The error A¥Y(X) =
[P (%) —
Y. (X) | where ¥.(X) approximate values
Modify Trainlm Trainlm(Standard)
0 0
2.45E — 11 0.003693
9.73E — 12 0.025023
4.65E — 05 2.82E — 08
9.9E — 12 2.76E — 08
2.08E — 12 0.337128
2.03E — 11 0.136837
1.06E — 11 0.000668
5.34E — 06 0.369058
4.67F — 10 0.002965
5.71E — 10 6.38E — 13
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Table 7: execution of the trail with period and time

Function Pereformance of teach | period | Time MSE
Modify of Trainlm 2.40e — 38 16 0:00:00 1.00486368693728¢ — 07
Trainblm(Standard) 5.22¢ -5 869 0:00:11 0.0287563073606448

Table 8: weight and bias of initial values for modify Lm training

algorethm
parameter of initial values for modify lm
Net.IW{1,1] Net.1U{1,1 Net. LW{2,1 Net. B{1}
0.4563 0.4472 0.1567 0.4887
0.5789 0.2960 0.1237 0.3986
0.2356 0.4598 0.5743 0.7954
0.6686 0.2398 0.9835 0.3986
0.0236 0.9347 0.4629 0.7698

parameter of initial values
for Standardlm
Net.IW{1,1] Net.1U{1,1 Net. LW{2,1] Net. B{1}
0.3785 0.6973 0.4787 0.4893
0.7065 0.2765 0.1298 0.5209
0,0365 0.0875 0.6578 0.8763
0.3678 0.6783 0.5398 0.7843
0.0549 0.1857 0.2987 0.7987
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Figure 1:exact and approximate solution of example2 using : modify trainlm and stander trainlm
algorithms
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