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Abstract

The estimates of best approximation using classical modulus of smoothness is not uniform. Also
we sometimes need to improve the degree of best approximation near the end points. Thus we need to
improve this classical modulus of smoothness. Here we define a new modulus of smoothness to
achieve uniform estimates of best approximation and an improvement of a degree of such version of
best approximation. Our modulus of smoothness is for k-monotone functions. Estimates for using our
modulus of smoothness are introduced. Applications for these estimates are also introduced.
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1. Introduction

Different moduli of smoothness were introduced. But the moduli of smoothness
that have the most attention in the recent years are the Ditizian—Totik modulus of
smoothness [3], and lvanov T modulus of smoothness [4] For more see [2]. The
estimates of best approximation using classical modulus of smoothness is not
uniform. Sometimes we need to improve the degree of best approximation near the
end points, Hear come the needness of uniform approximation if we want to get
uniform estimate then we choose modulus of smoothness other than the ordinary
modulus of smoothness. We define several types of moduli of smoothness of k-
monotone function in L,, spaces for p < 1. We introduce estimates for these moduli

of smoothness and then applications for these estimates. Let L, [a,b], p < 0 denote
the space of f : [a,b] - R
b 1/p
I f =1 = |7 1FOIPdx| 7, 0<p <o
The k™ divided difference [1] of functions defined on the interval [a, b] is

flxosxs, oo ]= o f () /0 (%)),
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where
w(x) = fzo(x — xj) for k € {0} UN.

The k-monotone function [ 1] defined on the interval [a, b] are those function which
the kth divided difference of them are non-negative for any k + 1 points
Xy X1 e onn xx in the interval [a,b]. If f € C*¥[a,b], f is k-monotone on [a, b]

iff f®(x) =0 forx € [a,b]. Where (*[a,b] is the space of all continuous
function which k-continuous derivatives.

Let us now define the k™ order modulus of smoothness for functions f in l,,;, as

wk(f’ 6)j)p = Su'p 0<h<é ” Allfl,(f”]) ”lp(])
where
k
_ k » kh ] kh
sFap= (Mo (x-5) ifxtse
=

l

Is the k™ symmetric difference .

2. The Auxiliary Results

Here we introduce the results that we need to prove our main theorems.
If £ is piecewise k-monotone function , then the following result is true.
Lemma 2.1

For f is piecewise k-monotone function, f € L[4 ) We have

w1(f,8,[a,bDg < c(q,p,8) 87 ?lifll 1, 0<q<p<1

Proof
1(f,8,a,b)g = sup o<nes |85 (.- DI,
=sup juj<s || £ (x +5) — Fe =)
<o (0 (x+2) g =1 £ (x=2)1,)
<57 [5PIIfI ]
w:(£,8,[a, b < c(p,0,9577fll,., (2.1)

where c(p, q, s) is appositive constant depends on p,q and s m

Remark 2.2

We cannot make the constant c¢(p, g, s) in (2.1) depending on the set S since this
make (2.1) not valid for any function f in L,[a, b], where S is the number of changes
of k-monotonicity off in [a, b].
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Lemma 2.3

fp(x) = sinmpx, 0<x<1
where § € N we have  w,(f,9) < c(p)Bd
Proof

Il = [|f (x+3) = F (x=3)]

h

=3
~n
2

h
1__
=2P|sinmBh/2|P [, *|cosmpx|Pdx
2

, h ) h_|P
sinnf (x + E) — sinnfB(x — E) dx

< c(p)|sintBh/2|P

w1(f,6,[0,1]) < c(p)supo<nss|sinmph/2|
< c(p)lsinntBs/2|

< c(p)Bs

especially when 6§ = 1/8,  — « so 6_5+5w1(fﬁ,6, [0,1])4 = oo there for this has
no upper bounded with bounded by [|fz[|, =
plo1]

Remark 2.4

11
wl(f' 6! [ar b])q = C(p' q, 5)6‘7 p”f”lp[a,b] (21)
We cannot increased the power in (2.1)
Proof

_ 1
For p < oo, fa=x“,0<a<;

fe 1S monotone

1f 0 = [ f(x)|pdx]% _ follx_alpdx]%

1

= [—azl7+1]5
01, 10,11) = sup | (x +5) = £ (x = 3|
= sup ” (x + g)‘“ —(x - g)_“”

2 supo<nss(llx + h/2)~I[ = l|(x = h/2)74]))

1
> suppanss [y |(x +2) | = | =B x]

1 1

—aq+1]y —-aq+1 —-aq+1
> [(1+6/2)“’“’+1 _ ) r _ [(1‘5) _ (75 r -

-aq+1 -aq+1 —-aq+1 —-aq+1

10
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Lemma 2.5 [1]

For f is k-monotone function L,,[—1,1] space. so we can find a polynomial q,, with
degree not exceeding n, satisfies

If = anlly < c(p, )y (f,n™), (2.2)
Lemma 2.6 [1]
If fEL,(), 0<p<1

E(A¥L,, T, n AR), < c(p)n~®*VE,_ (F*) .
Lemma 2.7 [1]
For P,(x) €, and 0 < p < o

En(f)p < c(@)wf (f,n 1)y

3. The Main Results

Here let us introduce our modulus of smoothness and its related results.

Definition 3.1
for is f k-monotone function and f € L,[a, b] the new measure of smoothness we
have

vs(f,q,p) = 897P
Remark 3.2

vs(f,q,p) =697
We cannot increased the power of 6.
Proof

_1 1
fe(x)=(1+x)€19 6>0,6—5$N0

There fand —f are k-monotone

1l = |Jo 1FGOPAx]?

p 1
fol dx]p
> |2 = c(ep)

w1(fe,6,[0,1D) g = sup ||f (x + g) - f (x — g)”
=sup |1+ (x+ D = @+ (=D

1
1+x)?
1

h h
> SUPo<h<s |(1 + (x + E).s—l/p| — ||(1 + (x— E)5—1/p||

1 1

[+ e+ g)e‘% q]" _ [fol (4 G g)e_% q]a

= SUPo<h=<s

11
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] 1 1
> Supo<nss _fj |1+ @+ 2)6‘1/P|q]q dx - [foll(l + 07| |7 dx

1

q
_ (4xd) P N (1+x) Pt
= Suposnss ||t — 0T

1

1
@+ P aep™ ]q B l(z)eq'%“ (1)“"%“]‘1

q - q
eq-1+1 € ——+1 €q—=+1 €q—=+1
q ? q q » q ?

= SUPo<h<s [

=(1-p) 2877 =
Proposition 3.3

For fis k-monotone function L,,[-1,1], 0 <p <q < 1. then there exist a
polynomial q,, of degree not exceeding n, satisfies

If = qull, < clp, )N ™w)_, (f,n1),

Proof
If = dnllp < ¢ 1) WF (£,
<clpk)n ol (f,n 1),
< c(p, )n2wy_,(f,n™ 1),
<cp)n™w,_,(f,nY), =
Theorem 3.4

Let 0 < p < q < 1,and L,[a, b] space. then there exist a polynomial q,, of degree not
exceeding n, such that

If = aully < e, On™™y1(f,a. D™,
n
proof

Since p,qg<1,0<m<k-1
then
wp(f,n™), <clpk)n™w! . (f,n™h),
< c(p, k) n~ @£,
< c(p, k) n~ @ P fll,

Now, let 0 < p < g < 1and let f € L, n A¥, where k is chosen such that £ € L,

where 0 <m < k — 1 by using Lemma 2.5 and £ € AK™™ we get for any n >
k — 1there exist a polynomial g,,0f degree not exceeding n, such that

If = anlly < cp, k) n™™ w) (f,n™1),.
Using Theorem 3.4 we get

If = aully < < O™y, DI F™l,

12
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A direct consequence of the above theorem we have
Corollary 3.5

let 0 < p < g < 1and f is k-monotone function in Ly, [a, b] space .then there is a

polynomial q,, of degree not exceeding n, with
If = aully < e ™ 4*?[|f0] - 0<m<k-1

Theorem 3.6

For f € A¥, and f is k-monotone function in L,[a,b], p<1
Such that fM eL,labl,0<m<k-—1

we have

”f - qn”p < C(plﬂ P2, D, k)wk—m(f(m)'n_l)p n—m—q+p”f(m)”p

Proof

(3.1)

leta =p(qg—1)/q(p—1),0 <p < q < 1.for f € A¥ with f(m)ELp, 0<m<

k—1
1
“f - qn”p = f_llf - qnlpdx
1

Choose 0 < p;1,p, <p <1, such that

If — anlly < c(prpINf = dnllp If — anllp,-
Then

1 1
If —anll, <clprp) [ If —aulPdx [|If — qnlP2dx

< (o p)IIf = anllf, IIf — dallp;©
Using (2.2) to obtain || — gnll, <
c(p1, P20, ) "0l (F™, ) wf_ (™, )

Using Corollary 3.5 to get

If = anlly < c(py, P2, 0, Ky, (F ™, 075 n‘m‘qﬂ’llf(’")llp u
Corollary 3.7

For0<p<qg<land 0 <m < k-1 wehave

”f - qn”q =0 (n_ml(n))
where

I(n) = n~9%P

13
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Definition 3.8

Let us denote by A"Lp for the set of all k-monotone function f define (—1,1)
and satisfying ||f|| < 1,and by II,, the space of all algebraic polynomial of degree
not exceeding n. Let,

E(A Ly, o)y = suppepry nfanen, IIf = dnll (3.4)
Is the degree of best approximation of functions in A"Lp a polynomial from II,,
Theorem 3.9
For f € A¥L,, we have E(A¥Ly,11,), < c(p)n~7*?, 0<p<gq<1.
Proof
Using (3.4) we get

E(A Ly, M)y < IIf = gnlly
Using Corollary 3.5 we get

E(A Ly, TTy), < c(p, kyn~m a*P||f0]]

< c(p, k)nP~1 ]

Definition 3.10
Let E(A*L,, T, N A%), = suPpenrr, NS genynakllf = anlly

is the degree of best approximation of function from A¥L, using k-monotone
polynomial in IT,,.

Theorem 3.11
For0 <p <gq <1 wehave E(A*L,, I, N A%), < c(p, k)nP~9
Proof
For m=0 in Corollary 3.5 and using Lemma 2.6 and Lemma 2.7
E(A*L,,TI, N Ak)p < c(p)n~**VE, . (F9)
< c(p)n” "D (f5,n™1),
< c(p)n‘(k+1)np‘q||f(")||p

< C(p)n—(k+1)+p—q

Conclusions

Many works are introduced for the direct theorem approximation using many
types of moduli of smoothness, but sometimes we need to improve the degree of best
approximation near the endpoints. So we need the uniform approximation. Hear we
define a suitable modulus of smoothness to get uniform approximation.
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