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Abstract 
     An injectivity in the category of semimodules over semiring was studied by many authors recently. 

On the other hand, the concept of injectivity, in the category of modules over ring, was generalized in 

many different directions. In particular, injective modules relative to preradical were some of those 

generalizations. 

       As an analogue to module theory, in this paper, we introduce  and investigate the notion of 

"injective semimodule relative to Jacobson radical (namely nearly injective semimodule)". 

Key words: subtractive semimodule; Jacobson radical; nearly injective semimodule; nearly direct 

summand; nearly split homomorphism. 

 

1. Introduction       
       Throughout this work, Ş stands for a commutative semiring with identity and a 

semimodule means a unitary left Ş-semimodule. An Ş-subsemimodule 𝐿 of an Ş-

semimodule 𝐴 is called subtractive if for all 𝑎, 𝑎′  ∈ 𝐴, 𝑎 + 𝑎′, 𝑎 ∈ 𝐿 implies 𝑎′ ∈ 𝐿, it 

is clear that 0 and 𝐴 are subtractive Ş-subsemimodules of 𝐴. An Ş-semimodule 𝐴 is a 

subtractive Ş-semimodule if it has only subtractive subsemimodules [1]. For convince 

all  Ş-semimodules assumed in this work will be considered subtractive. 

       An Ş-semimodule 𝑊 is called injective if for every Ş-monomorphism 𝛼: 𝐴 ⟶ 𝐵 

and for each Ş-homomorphism 𝛽: 𝐴 ⟶ 𝑊, there is an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 

such that ℎ𝛼 = 𝛽[1]. 

       In 2000, nearly injective modules were discussed in [2] as a generalization of 

injective modules. A module 𝑊 is called nearly injective, if for every monomorphism 

𝛼: 𝐴 ⟶ 𝐵 (where 𝐴 and 𝐵 are two modules) and for each homomorphism 𝛽: 𝐴 ⟶ 𝑊, 

there is a homomorphism ℎ: 𝐵 ⟶ 𝑊 such that (ℎ ∘ 𝛼)(𝑥) − 𝛽(𝑥) ∈ 𝐽(𝑊), ∀𝑥 ∈ 𝐴 

where 𝐽(𝑊) is the Jacobson radical of the  module 𝑊, which is defined to be the 

intersection of all maximal submodules of 𝑊. 

       As an analogue to the case in modules, nearly injective semimodule, is introduced 

in this work. An Ş-semimodule 𝑊 is called nearly injective, if for every Ş-
monomorphism 𝛼: 𝐴 ⟶ 𝐵 (where 𝐴 and 𝐵 are two Ş-semimodules), each Ş-
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homomorphism 𝛽: 𝐴 ⟶ 𝑊, there is an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 such 

that 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝛽, where 𝜋𝐽:𝑊 ⟶ 𝑊/𝐽(𝑊) is the natural epimorphism, and 𝐽(𝑊) is  

the Jacobson radical of 𝑊. As in modules 𝐽(𝑊) is the intersection of all maximal Ş-
subsemimodules of 𝑊. 

       Many properties and characterizations of nearly injectivity were investigated. The 

main results of this work are: It is shown that these semimodules are closed under 

arbitrary direct product, finite direct sum and direct summand. Nearly direct summand 

with proof that an Ş-semimodule 𝑊 is nearly injective if and only if, it is a nearly 

direct summand of every extension of itself. Therefore the nearly split homomorphism 

with proof that an Ş-semimodule 𝑊 is nearly injective if and only if, for each Ş-
semimodule 𝐹, every Ş-monomorphism 𝛼:𝑊 ⟶ 𝐹 is  nearly split. 

       In addition to section 1, there are two sections. Section 2 consists the 

preliminaries that are needed in the investigations. Some of these were found in the 

literatures. In section 3, injective Ş-semimodule and their properties and 

characterizations were given. 

2- Preliminaries 

       In this section same definitions, their properties and characterizations of these Ş-
semimodules needed in this work. 

Definition 2.1 [3]. Let Ş be a semiring. A left Ş-semimodule 𝐴Ş is a commutative 

monoid (𝐴, +,0) for which we have a function Ş × 𝐴 ⟶ 𝐴, defined by (𝑠, 𝑎) ↦ 𝑠𝑎 

such that ∀ 𝑠, 𝑡 ∈ Ş and 𝑎, 𝑎′ ∈ 𝐴, 

1. 𝑠(𝑎 + 𝑎′) = 𝑠𝑎 + 𝑠𝑎′. 
2. (𝑠 + 𝑡)𝑎 = 𝑠𝑎 + 𝑡𝑎. 

3.  (𝑠𝑡)𝑎 = 𝑠(𝑡𝑎). 
4.  0Ş 𝑎 = 0𝐴 = 𝑠0𝐴. 

If 1Ş𝑎 = 𝑎 holds for each 𝑎 in 𝐴 then a left Ş-semimodule 𝐴 is called unitary. 

Definition 2.2 [3]. Let 𝐿 be a subset of a left Ş-semimodule 𝐴 then 𝐿 is called 

subsemimodule of 𝐴 if 𝐿 is closed under addition and scalar multiplication. In this 

case it is denoted by 𝐿 ↪ 𝐴. 

Definition 2.3 [3] An Ş-subsemimodule 𝐿 of an Ş-semimodule 𝐴 is called subtractive 

if for all 𝑎, 𝑎′ ∈ 𝐴    𝑎, 𝑎 + 𝑎′ ∈ 𝐿 implies 𝑎′ ∈ 𝐿. 

       An Ş-semimodule 𝐴 is a subtractive Ş-semimodule if it has only subtractive 

subsemimodules.  

Definition 2.4 [4] An Ş-semimodule 𝐴 is called yoked if  for all 𝑎, 𝑏 ∈ 𝐴 there exists 

𝑐 ∈ 𝐴 such that 𝑎 = 𝑏 + 𝑐 or 𝑎 + 𝑐 = 𝑏.  

Definition 2. 5 [4] An Ş-semimodule 𝐴 is additively cancellative if  𝑎 + 𝑐 = 𝑏 + 𝑐 ⟹
𝑎 = 𝑏.  
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       We denote to the Ş-semimodule that possess the three conditions, yoked, 

cancellative and subtractive by 𝒴𝒞𝒮-semimodule.  

Definition 2.6 [5] An Ş-subsemimodule 𝐿 of an Ş-semimodule 𝐴 is called a direct 

summand of 𝐴 if there exists Ş-subsemimodule 𝐾 such that 𝐴 = 𝐿⨁𝐾 and 𝐴 is called 

a direct sum of 𝐿 and 𝐾. 

Definition 2.7 [3] Let 𝐴 and 𝐵 be Ş-semimodules. A homomorphism from 𝐴 to 𝐵 is a 

map 𝜑: 𝐴 ⟶ 𝐵 such that 

1. 𝜑(𝑎 + 𝑎′) = 𝜑(𝑎) + 𝜑(𝑎′) and 

2.  𝜑(𝑠𝑎) = 𝑠𝜑(𝑎)               ∀ 𝑎, 𝑎′ ∈ 𝐴 and 𝑠 ∈ Ş. 

For a homomorphism of Ş-semimodules 𝜑 : 𝐴 ⟶ 𝐵 we define: 

1. ker(𝜑) = {𝑎 ∈ 𝐴|𝜑(𝑎) = 0}. 
2.  𝜑(𝐴) = {𝜑(𝑎)|𝑎 ∈ 𝐴)}. 
3.  𝐼𝑚(𝜑) ={𝑏 ∈ 𝐵 | 𝑏 + 𝑓(𝑎) = 𝑓(𝑎′) for some a, a'∈ 𝐴}. 

A homomorphism of  Ş-semimodules 𝜑 ∶ 𝐴 ⟶ 𝐵 is a: 

1. monomorphism, if for any Ş-semimodule 𝐿 and Ş-hhomomorphism's 𝛼𝛽: 𝐿 → 𝐴 

with  𝜑 ∘ 𝛼 = 𝜑 ∘ 𝛽, we have 𝛼 = 𝛽. 

2. epimorphism, if for any Ş-semimodule 𝐾 and Ş-homomorphisms  𝛼, 𝛽: 𝐵 → 𝐾 

with 𝛼 ∘ 𝜑 = 𝛽 ∘ 𝜑, we have 𝛼 = 𝛽. 

3.  isomorphism if 𝜑 is monomorphism and epimorphism. 

4.  image regular (𝑖-regular), if 𝜑(𝐴) = 𝐼𝑚(𝜑). 
5.  kernel regular (ҟ-regular) if 𝜑(𝑎) = 𝜑(𝑎′) ⟹ 𝑎 + 𝑘 = 𝑎′ + 𝑘′ for some, 𝑘, 𝑘′ ∈
 ker (𝜑). 

6.  regular  if  𝜑 is 𝑖-regular and ҟ-regular. 

Definition 2.8 [3] The (possibly infinite) sequence of  Ş –semimodules 

…𝐴𝑖
𝜑
→ 𝐴𝑖+1

𝜑𝑖+1
→  𝐴𝑖+2

𝜑𝑖+2
→  … is said to be: 

1. exact, if 𝐼𝑚𝜑𝑖 = 𝑘𝑒𝑟𝜑𝑖+1∀ 𝑖 ∈ 𝐼. 
2. proper exact, if 𝜑𝑖(𝐴𝑖) = 𝑘𝑒𝑟𝜑𝑖+1∀ 𝑖 ∈ 𝐼. 

Proposition 2.9 [3] Let 𝐴 and 𝐵 be Ş-semimodules, then a homomorphism of Ş-
semimodules 𝜑: 𝐴 ⟶ 𝐵 is: 

1. injective if and only if it is a monomorphism. 

2.  surjective if and only if it is epimorphism and 𝜑(𝐴) ⊆ 𝐵 is subtractive.      

Lemma 2.10 [3] Let 𝐴, 𝐵 be Ş-semimodules and 𝜑 ∈  𝐻𝑜𝑚Ş(𝐴, 𝐵) , then 

1. 𝐼𝑚(𝜑) is subtractive. 

2. 𝜑(𝐴) is subtractive if and only if 𝜑(𝐴) = 𝐼𝑚(𝜑).      
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     The following two lemmas and corollary had been proved for modules (see e.g. [6, 

pp.60-61]), but for semimodules they need extra conditions and then new converted 

proofs that were not found in the literatures.  

Lemma 2.11 Let 𝐴 and 𝐵 be 𝒴𝒞𝒮-semimodule and 𝜑 ∈  𝐻𝑜𝑚Ş(𝐴, 𝐵) be an Ş-

homomorphism then, 

1. if 𝐿 ↪ 𝐴 ⟹ 𝜑−1(𝜑(𝐿)) = 𝐿 + ker (𝜑). 

2.  if 𝐾 ↪ 𝐵 ⟹ 𝜑(𝜑−1(𝐾)) = 𝐾 ∩ 𝐼𝑚(𝜑). 

Proof: (1) Let 𝑥 ∈ 𝜑−1(𝜑(𝐿)) ⟹ 𝜑(𝑥) ∈ 𝜑(𝐿) ⟹ 𝜑(𝑥) = 𝜑(𝑙)            𝑙 ∈ 𝐿.    

Then, either  𝑥 = 𝑙 + 𝑘. 

⟹ 𝜑(𝑙) + 𝜑(𝑘) = 𝜑(𝑙) ⟹ 𝜑(𝑘) = 0 ⟹ 𝑘 ∈ 𝑘𝑒𝑟 (𝜑) ⟹ 𝑥 ∈ 𝐿 + 𝑘𝑒𝑟 (𝜑). 

Or 𝑥 + 𝑘 = 𝑙 ⟹ 𝜑(𝑥) = 𝜑(𝑥) + 𝜑(𝑘) ⟹ 𝜑(𝑘) = 0 ⟹ 𝑘 ∈ 𝑘𝑒 𝑟(𝜑) 

⟹ 𝑙 ∈ 𝐿 + 𝑘𝑒 𝑟(𝜑) ∧  𝑘 ∈ 𝐿 + 𝑘𝑒𝑟 (𝜑) ⟹ 𝑥 ∈ 𝐿 + 𝑘𝑒𝑟 (𝜑), by subtractive property. 

Thus 𝑥 ∈ 𝐿 + 𝑘𝑒 𝑟(𝜑)  (in any case). The other direction is clear. 

(2) From set theory 𝜑(𝜑−1(𝐾)) = 𝐾 ∩ 𝜑(𝐴), by subtractive property 𝜑(𝐴)= 𝐼𝑚(𝜑).   
□ 

Lemma 2.12 Let 𝐴 and 𝐵 be 𝒴𝒞𝒮-semimodule and the following diagram be 

commutative 

 

 

(i.e. 𝛽 = ℎ𝛼) then, 

1. 𝐼𝑚(𝛼) + ker(ℎ) = ℎ−1(𝐼𝑚(𝛽)) 

2.  𝐼𝑚(𝛼) ∩ ker(ℎ) = 𝛼(𝑘𝑒𝑟(𝛽))  

Proof: (1) let 𝛽 = ℎ𝛼 ⟹ 𝐼𝑚(𝛽) = 𝐼𝑚(ℎ𝛼) = ℎ(𝐼𝑚(𝛼)) 

⟹ ℎ−1(𝐼𝑚(𝛽)) = ℎ−1 (ℎ(𝐼𝑚(𝛼))) = 𝐼𝑚(𝛼) + 𝑘𝑒𝑟(ℎ) by Lemma(2.11(1)).    

(2) Let 𝑘𝑒𝑟(𝛽) = 𝑘𝑒𝑟(ℎ𝛼) = 𝛼−1(𝑘𝑒𝑟(𝛽)). 

⟹ 𝛼(𝑘𝑒𝑟(𝛽)) = 𝛼(𝛼−1(𝑘𝑒𝑟(𝛽))) = 𝐼𝑚(𝛼) ∩ ker(ℎ) by Lemma(2.11(2)).   

 

𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 
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Corollary 2.13 Let 𝐴 and 𝐵 be 𝒴𝒞𝒮-semimodule and the following diagram be 

commutative 

(i.e. ℎ𝛼 = 𝛽) then, 

 

 

1. 𝛽 is epimorphism  ⟹ 𝐼𝑚(𝛼) + 𝑘𝑒𝑟(ℎ) = 𝐵. 

2.  𝛽 is monomorphism  ⟹ 𝐼𝑚(𝛼) ∩ ker(ℎ) = 0. 

3.  𝛽 is isomorphism  ⟹ 𝐼𝑚(𝛼)⨁ker(ℎ) = 𝐵. 

Proof: consequently from Lemma (2.12). □ 

Definition 2.14 [1] An Ş-semimodule 𝐴 is called injective if for every Ş-
monomorphism 𝛼: 𝐴 ⟶ 𝐵 and for each Ş-homomorphism 𝛽: 𝐴 ⟶ 𝑊, there is an Ş-
homomorphism ℎ: 𝐵 ⟶ 𝑊 such that  the following diagram is commutative  

  

 

(i.e. ℎ𝛼 = 𝛽). 

 

Definition 2.15. [1]. An Ş-semimodule 𝐴 is called ҟ-injective if for every Ş-
monomorphism 𝛼: 𝐴 ⟶ 𝐵 and for each Ş-homomorphism 𝛽: 𝐴 ⟶ 𝑊, there is a ҟ-

regular Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 such that  the following diagram be 

commutative  

 

 

(i.e. ℎ𝛼 = 𝛽). 

Clearly if  𝑊 is called ҟ-injective then 𝑊 is injective.  

Proposition 2.16. [1] Let {𝑊𝜆}𝜆∈∧ be a family of Ş-semimodules then ∏ 𝑊𝜆𝜆∈∧  is 

injective if and only if each 𝑊𝜆 is injective.     □  

Proposition 2.17. Let {𝑊𝜆}𝜆∈∧ be a family of Ş-semimodules and 𝑊 =⊕𝜆∈∧𝑊𝜆, 

then: 

1. If  𝑊 is injective then each 𝑊𝜆 is injective. 

2. If  each 𝑊𝜆 is injective  and ∧ is finite set then 𝑊 is injective. 

𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 

0 𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 

0 𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 
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Proof: (1) The proof is similar to the proof of the necessity part of Proposition (2.16).  

(2) Clear. Since the product and coproduct coincide in the finite case, and by 

Proposition(2.16).         

Definition 2.18.[7]. Let 𝑊 be an Ş-semimodule. An Ş-subsemimodule 𝐴 of 𝑊 is 

called large (essential) Ş-subsemimodule of 𝑊 if for every  Ş-subsemimodule 𝑈 of 𝑊 

, 𝐴⋂𝑈 = 0 implies 𝑈 = 0, in this case we say that 𝑊 is an essential extension of 𝐴.  

𝑊 is called  maximal essential extension of 𝐴 if whenever   𝐿 is a proper extension of 

𝑊 then 𝐿 is not  an essential extension of 𝐴. Note that we shall denote the statement 

′′𝐴 is a large subsemimodule 𝐴 of the Ş-semimodule 𝑊 ′′ by 𝐴 ≼ℯ 𝑊. 

Definition 2.19. An injective Ş-semimodule 𝑊 is called minimal injective extension 

of an Ş-subsemimodule 𝐴 if  𝑊 is an extension of 𝐴 and whenever 𝐿 is a proper 

subsemimodule of 𝑊 which contains 𝐴 then 𝐿 is not injective.   

       The following statement is true for any module, see for example [6, pp. 114], but 

for semimodules the subtractive condition is needed and we have to give a 

corresponding proof. 

Lemma 2.20. Let 𝑊 be a subtractive Ş-semimodule. If 𝐴 is a subsemimodule of 𝑊 

and 𝐵 is a subsemimodule of 𝑊 maximal with the property 𝐴 ∩ 𝐵 = 0, then 

𝐴⨁𝐵 ≼ℯ 𝑊. 

Proof: Assume that both 𝐴 and 𝐵 are subsemimodules of the subtractive Ş-
semimodule 𝑊 and 𝐵 is maximal with the property 𝐴 ∩ 𝐵 = 0. Then it is clear that  

𝐴 + 𝐵 = 𝐴⨁𝐵. If 𝐶 is a subsemimodule of 𝑊 and (𝐴 + 𝐵) ∩ 𝐶 = 0, then we have  

𝐴 ∩ 𝐶 = 0 and 𝐵 ∩ 𝐶 = 0. We claim that 𝐴 ∩ (𝐵 + 𝐶) = 0. For if 𝑎 ∈ 𝐴 ∩ (𝐵 +
𝐶) = 0, then 𝑎 = 𝑏 + 𝑐 with 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶.  

Now, 𝑎 ∈ 𝐴 implies 𝑎 ∈ 𝐴 + 𝐵 and 𝑏 ∈ 𝐵 implies 𝑏 ∈ 𝐴 + 𝐵. Since 𝐴 + 𝐵 is 

subtractive, we must have 𝑐 ∈ 𝐴 + 𝐵, so 𝑐 ∈ (𝐴 + 𝐵) ∩ 𝐶) = 0, that is 𝑐 = 0. Hence 

𝑎 = 𝑏 ∈ 𝐴 ∩ 𝐵 = 0. 

By maximality of 𝐵, it follows 𝐵 + 𝐶 = 𝐵 and since 𝐵 ∩ 𝐶 = 0, we have 𝐶 = 0. 

Therefore 𝐴⨁𝐵 ≼ℯ 𝑊.     □  

Note: Analogue to the case in modules, such subsemimodule 𝐵 (with the property 

given in the previous lemma will be called an intersection complement of 𝐴 in 𝑊 

(shortly inco of 𝐴 in 𝑊), see [6, D. 5.2.1]. As in the proof above an inco of a given 

subsemimodule, always exists.    

Proposition 2.21. Let 𝑊 be a 𝒴𝒞𝒮-semimodule and contained in an injective Ş-
semimodule then 𝑊 is injective if and only if it is a direct summand of every 

extension of itself. 
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 Proof: Suppose that 𝑊 is injective and  𝐴 is a proper extension of 𝑊, consider the 

following diagram. Where 𝛼 is a monomorphism 

 

 

 

Such that  ℎ𝛼 = 𝐼𝑊 ⟹ 𝐼𝑚(𝛼) is direct summand in 𝐴 (Corollary (2.13)).  

Since 𝛼 is a monomorphism, 𝑊 ≅  𝐼𝑚(𝛼), hence 𝑊 is direct summand in 𝐴. 

Conversely, suppose that 𝑊 is direct summand of every extension of it. 

Now, since 𝑊 is contained in an injective Ş-semimodule then 𝑊 has an injective 

extension Ş-semimodule. say 𝐿. Thus 𝑊 will be a direct summand of 𝐿 and so will be 

injective by proposition (2.16).     □ 

Proposition 2.22. Let 𝑊 be an essential extension of 𝐴 and let 𝐵 an injective 

extension of 𝐴 then the inclusion mapping of 𝐴 into 𝐵 can be extended to an 

embedding of  𝑊 in 𝐵. 

Proof: The same proof as in the case of modules (see [8, pp.41]).     □  

Proposition 2.23. Let 𝐴 be an Ş-semimodule and 𝐵 an injective extension of 𝐴 then 𝐵 

has subsemimodule 𝑊 which is a maximal essential extension of 𝐴. 

Proof: The same proof as in the case of modules (see[8, pp.42]).     □  

       The proof of the following Theorem (2.24) and Proposition (2.25) are similar to 

the case of modules, by considering extra condition that it is needed for semimodules 

(see[8, pp.43]). For completeness we give a full proof.   

Theorem 2.24. Let 𝑊 be a 𝒴𝒞𝒮-semimodule and contained in an injective Ş-
semimodule, then 𝑊 is injective if and only if it has no proper essential extension. 

Proof: Suppose that 𝑊 is injective and let 𝐿 be a proper extension of 𝑊. 

Now, by Proposition (2.21) 𝑊 is direct summand of 𝐿, so it cannot be essential in 𝐿. 

Conversely, suppose that 𝑊 has no proper essential extension. 

Now, let 𝐿 be any extension of 𝑊, and Let 𝐾 be an inco of 𝑊 in 𝐿. (we assume that 𝐿 

is a proper extension of 𝑊). Then 𝐿/𝐾 ⊇ (𝑊⊕𝐾)/𝐾 ≅ 𝑊 (by the isomorphism 

theorem see [6]). 

𝑊 
𝛼 

ℎ 𝐼𝑊 

𝑊 

𝐴 
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That is 𝐿/𝐾 is an extension of 𝑊, and so by assumption 𝑊 is not essential in 𝐿/𝐾 

((𝑊 ⊕𝐾)/𝐾 is not essential in 𝐿/𝐾 ). Then there exists 𝑌 ⊆ 𝐿 such that 𝑌/𝐾 ∩
(𝑊⊕𝐾)/𝐾 = 0 which implies 𝑌 ∩ (𝑊⊕𝐾) = 𝐾. 

Hence 𝑌 ∩𝑊 ⊆ 𝐾 ∩𝑊 = 0⟹ 𝑌 ∩𝑊 = 0 ∧  𝑌 ⊇ 𝐾.  

Which contradicts the maximality of 𝐾. So, 𝐿 = 𝑊⊕𝐾. 

Since L is an arbitrary extension of W, thus W is a direct summand of any extension of 

it. 

Therefore by Proposition (2.21) 𝑊 is injective.       

Proposition 2.25. Let 𝑊 be a 𝒴𝒞𝒮-semimodule which is contained in an injective Ş-
semimodule. If 𝐴 is an Ş-semimodule contained in 𝑊, then the following statements 

are equivalent: 

1. 𝑊 is an essential injective extension of 𝐴.  

2.  𝑊 is a maximal essential extension of 𝐴. 

3.  𝑊  is a minimal injective extension of 𝐴.  

Proof: (1) ⟺ (2) is obvious from Theorem (2.24). 

(2) ⟹ (3). Assume, 𝑊 is a maximal essential extension of 𝐴. Then 𝑊 must be 

injective by Theorem (2.24). 

Let 𝑈 be an injective extension of 𝐴 contained in 𝑊. Then  𝑊 is an injective 

extension of 𝑈, so 𝑊 = 𝑈 by Theorem (2.24) applied to 𝑈. 

Hence 𝑊 is a minimal injective extension of 𝐴. 

(3) ⟹ (1) Assume,  𝑊 is a minimal injective extension of 𝐴.  

Now, by Proposition (2.23)  𝑊 has a subsemimodule 𝐿 which is a maximal essential 

extension of 𝐴 and so injective it follows that 𝐿 = 𝑊  and (1) is established.     □ 

       An Ş-semimodule 𝑊 satisfying the conditions of Proposition (2.25) is called an 

injective envelope (or injective hull) of 𝐴 (if it exists), we use the notation 𝐸(𝐴) to 

stand for an injective envelope of 𝐴 [9].        

       Recall that a maximal Ş-subsemimodule of a semimodule 𝐴 is a subsemimodule 

of 𝐴 that is not contained properly in any other proper subsemimodule of 𝐴.  

Definition 2.26[10]. Let 𝑊 be an Ş-semimodule and 𝐴 be a non-zero Ş-
subsemimodule of 𝑊. We say that 𝐴 is a small (superfluous ) Ş-subsemimodule of 𝑊 

if for every Ş-subsemimodule 𝑈 of 𝑊, 𝐴 + 𝑈 = 𝑊 implies 𝑈 = 𝑊. Then we shall 

denote a small Ş-subsemimodule  𝐿 of Ş-semimodule 𝐴 by   𝐿 ≼𝑠  𝐴. 
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Definition 2.27[10]. Let 𝐴 be an Ş-semimodule, the Jacobson radical of 𝐴 is denoted 

by 𝐽(𝐴) and defined as 

𝐽 (𝐴) =⋂{𝐿 ∶ 𝐿 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑚𝑖𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝐴}.

𝐿⊆𝐴

 

Proposition 2.28[10]. Let 𝐴 be an Ş-semimodule, then 

∑ 𝐿

𝐿≼𝑠𝐴

= ⋂{𝑀: 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑚𝑖𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝐴 }

𝑀⊆𝐴

 . 

Proposition 2.29[10]. Let 𝐴 be an Ş-semimodule and 𝐽 is a Jacobson radical of 𝐴 

then: 

1. 𝐽(𝐴) ↪ 𝐴. In particular, 

2. Let 𝐴 and 𝐵 be subtractive Ş-semimodules and 𝜑 ∈  𝐻𝑜𝑚Ş(𝐴, 𝐵) be ҟҟ-regular Ş-

homomorphism (𝜑 is an epimorphism  and ҟ-regular), then 𝜑(𝐽(𝐴)) ⊆ 𝐽(𝐵), in 

particular if 𝐿 ↪ 𝐴 then 𝐽(𝐿) ↪ 𝐽(𝐴).  
3.  𝐽(𝐴/𝐽(𝐴)) = 0. 

Note: The Proposition (2.29(2))  is true when  𝜑 be an Ş-monomorphism (see[11]).  

3- Nearly injective Ş-semimodules:  

Definition 3.1. An Ş-semimodule 𝑊 is called nearly injective, if for every Ş-
monomorphism 𝛼: 𝐴 ⟶ 𝐵 (where 𝐴 and 𝐵 are two Ş-semimodules), each Ş-
homomorphism 𝛽: 𝐴 ⟶ 𝑊, there is an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 such 

that 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝛽, where 𝜋𝐽:𝑊 ⟶ 𝑊/𝐽(𝑊) is the natural epimorphism and 𝐽(𝑊)  is 

the Jacobson radical of  𝑊. 

 

 

 

 

Examples and Remarks 3.2. 

1. every injective semimodule is nearly injective.  

2.  every ҟ -injective semimodule is nearly injective. 

3.  Every Ş-semimodule which has no maximal subsemimodule is nearly injective. 

4.  It is clear that if  𝐽(𝑊) = 0 then 𝑊 is injective if and only if it is nearly injective. 

5.  If 𝑊1 ≅ 𝑊2, and 𝑊1 is nearly injective then 𝑊2 is nearly injective, too. 

6.  

0 𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 
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Proposition 3.3. An Ş-semimodule 𝑊 is nearly injective if and only if, for any 

diagram  

 

 

 

 

(where 𝐴 is an Ş-subsemimodule of  𝐵 and 𝑖 is the inclusion mapping) there exists an 

Ş- 

homomorphism ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽ℎ𝑖 = 𝜋𝐽𝛽, where 𝜋𝐽:𝑊 ⟶𝑊/𝐽(𝑊) is the 

natural epimorphism. 

Proof: The necessity is clear.  

Sufficiency: consider the following diagram 

 

 

 

 

(with 𝛼 is an Ş-monosophism and 𝛽 is homomorphism).  

Now, we define 𝜑: 𝐴 ⟶ 𝛼(𝐴) that is 𝑖𝜑 = 𝛼 (where 𝑖: 𝛼(𝐴) ⟶ 𝐵 is the inclusion 

mapping).  

Thus we have the following diagram. 

 

 

 

 

Then by supposition there exists an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽𝛽𝜑
−1 =

𝜋𝐽ℎ𝑖  

⟹ 𝜋𝐽𝛽𝜑
−1𝜑 = 𝜋𝐽ℎ𝑖 𝜑 ⟹  𝜋𝐽𝛽 = 𝜋𝐽ℎ𝛼. Hence 𝑊 is nearly injective.    □ 

𝐴 
𝑖 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 

𝐴 
𝜑 

𝛽𝜑−1 
𝛽 

𝑊 

𝛼(𝐴) 

𝜋𝐽 

𝑊/𝐽(𝑊) 

𝐵 

ℎ 

𝑖 

𝜑−1 

𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 
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Proposition 3.4. Let 𝑊 be an Ş-semimodule, then the following statements are 

equivalent:  

1. 𝑊 is nearly injective Ş-semimodule. 

2.  For every diagram, 

 

 

 

 

Where i is the inclusion map and 𝛽  is any homomorphism, there exists an Ş-
homomorphism ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽ℎ𝑖 = 𝛽𝜋𝐽, where 𝜋𝐽:𝑊 ⟶𝑊/𝐽(𝑊) is the 

natural epimorphism. 

3. For every diagram with 𝐴 ≼ℯ 𝐵, 

 

 

 

 

There exists an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽ℎ𝑖 = 𝛽𝜋𝐽, where 𝜋𝐽:𝑊 ⟶

𝑊/𝐽(𝑊) is the natural epimorphism. 

Proof: (1) ⟺ (2) is by Proposition (3.3) (2) ⟹ (3) is obvious.  

(3) ⟹ (1), given any diagram with exact row, and 𝛽: 𝐴 ⟶ 𝑊 be any Ş-
homomorphism. 

 

 

 

 

Let 𝜑: 𝐴 ⟶ 𝛼(𝐴) defined by 𝜑(𝑎) = 𝛼(𝑎) for all 𝑎 in 𝐴, then 𝜑 is an isomorphism, 

 𝑖𝜑 = 𝛼, where 𝑖: 𝛼(𝐴) ⟶ 𝐵 is the inclusion map. Consider the following diagram, 

 

0 𝐴 
𝑖 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 

0 𝐴 
𝑖 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 

0 𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 
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If 𝛼(𝐴) is essential in 𝐵, then by (3) there exists ℎ: 𝐵 ⟶ 𝑊 such that ℎ𝑖 = 𝜋𝐽𝛽𝜑
−1 

and so 𝜋𝐽ℎ𝑖𝜑 = 𝜋𝐽𝛽𝜑
−1𝜑 which implies 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝛽.  

If 𝛼(𝐴) is not essential in 𝐵, then by Lemma (2.20), 𝐷 = 𝛼(𝐴)⨁𝐶 ≼ℯ 𝐵, where 𝐶 is 

an inco of 𝛼(𝐴) in 𝐵. Consider the mappings 𝑗: 𝜑(𝐴) ⟶ 𝐷, the natural 

injection; 𝜋: 𝐷 ⟶ 𝜑(𝐴) the natural projection; and 𝑖: 𝐷 ⟶ 𝐵, the inclusion map. By 

(3), there exists ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽ℎ𝑖 = 𝜋𝐽  𝛽𝜑
−1𝜋, then 𝜋𝐽ℎ𝑖𝑗𝜑 = 𝜋𝐽 𝛽𝜑

−1𝜋𝑗𝜑, 

note that: 

 𝑖𝑗𝜑 = 𝛼; 𝜋𝑗 = 1𝜑(𝐴) ;  𝜑
−1𝜑 = 1𝐴, so we have 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝛽.  

Therefore 𝑊 is nearly injective Ş-semimodule.     □ 

Corollary 3.5. An Ş-semimodule 𝑊 is nearly injective if and only if, for every 

diagram with 𝐴 ≼ℯ 𝐵  

 

 

 

 

there exists an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽ℎ𝑖 = 𝜋𝐽𝛽, where 𝜋𝐽:𝑊 ⟶

𝑊/𝐽(𝑊) is the natural projection and 𝐽(𝑊)  is the Jacobson radical of  𝑊.     □ 

    Proposition (3.11) we will give another characterization of nearly injective Ş-
semimodules by using the class of free semimodules , so we need to mention the 

following definitions in [12].     

Definition 3.6. A set 𝑋 is called a generated set of the semimodule 𝐴, if 𝐴 is the 

smallest subsemimodule containing 𝑋, in this case we right 𝐴 = 〈𝑋〉. 

Remark 3.7. 𝐴 = 〈𝑋〉 if and only if ∀𝑎 ∈ 𝐴, 𝑎 = ∑ 𝑠𝑖𝑥𝑖𝑓𝑖𝑛𝑖𝑡𝑒 , 𝑠𝑖 ∈ Ş, 𝑥𝑖 ∈ 𝑋. 

𝜑−1 

 𝛽𝜑−1𝜋 

 

0 𝐴 
𝜑 

𝛽 

𝑊 

𝛼(𝐴) 

𝜋𝐽 

𝑊/𝐽(𝑊) 

𝐷 

ℎ 

𝑗 
𝐵 

𝜋 

 

𝑖 

0 𝐴 
𝑖 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 
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Definition 3.8. A set 𝐴  is called a free set if for each {𝑎1, 𝑎2, 𝑎3, ……… . , 𝑎𝑛} ⊆ 𝐴(𝑛 

a positive integer), the combination ∑ 𝑠𝑖𝑎𝑖
𝑛
𝑖=0 = 0 implise 𝑠𝑖 = 0 ∀𝑖. 

Definition 3.9. A set 𝐴 is called a basis of the semimodule 𝑊 if it is a free generating 

set of  𝑊.  

Definition 3.10. A semimodule 𝑊 is called a free-semimodule if it has a basis. 

Proposition 3.11. An Ş-semimodule 𝑊 is a nearly injective if and only if, for every 

diagram with exact row and 𝐵 is a free Ş-semimodule 

 

 

 

 

there exists an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝛽, where 𝜋𝐽:𝑊 ⟶

𝑊/𝐽(𝑊) is the natural projection and 𝐽(𝑊)  is the Jacobson radical of  𝑊. 

Proof: Necessity is clear.  

 Sufficiency: Consider the following diagram with 𝛼 a monomorphism and F = Ş (|B|). 

 

 

 

 

 

Then F is a free Ş-semimodule, and 𝐵 can be considered as a subsemimodule of F.  

Therefore by hypothesis there exists an Ş-homomorphism ℎ: 𝐹 ⟶ 𝑊 such that 

𝜋𝐽ℎ𝑖𝛼 = 𝜋𝐽𝛽         …(i). 

So, put ℎ1 = ℎ𝑖: 𝐵 ⟶ 𝑊, then we have 𝜋𝐽ℎ1𝛼 = 𝜋𝐽ℎ𝑖𝛼. It follows that by (i) 

𝜋𝐽ℎ1𝛼 = 𝜋𝐽 𝛽. 

Hence 𝑊 is  nearly injective Ş-semimodule. □ 

Now, we will study the direct product and the direct sum of nearly injective 

semimodules. The following propositions shows that this result is true in case of 

nearly injective semimodules. 

0 𝐴 
𝛼 

ℎ1 𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 

𝐹 

ℎ 

𝑖 

0 𝐴 
𝛼 

ℎ 
𝛽 

𝑊 

𝐵 

𝜋𝐽 

𝑊/𝐽(𝑊) 
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Proposition 3.12. Let {𝑊𝜆}𝜆∈∧ be a family of Ş-semimodules and 𝑊 = ∏ 𝑊𝜆𝜆∈∧ ,  

then 𝑊 is nearly injective if and only if each 𝑊𝜆 is nearly injective. 

Proof: Assume that 𝑊 = ∏ 𝑊𝜆𝜆∈∧  is nearly injective Ş-semimodules. 

Now, we will denote the natural projections, 𝑊 onto 𝑊/𝐽(𝑊) by 𝜋𝐽and 𝑊𝜆 onto 𝑊𝜆/

𝐽(𝑊𝜆) by 𝜋𝐽𝜆 for any 𝜆 ∈∧.  

Let 𝑃𝜆:𝑊 ⟶𝑊𝜆 and  𝑖𝜆:𝑊𝜆⟶𝑊 be the projections and injections associated with 

this direct product respectively for any 𝜆 ∈∧. 

Define 𝑞𝜆:𝑊/𝐽(𝑊) ⟶ 𝑊𝜆/𝐽(𝑊𝜆) by 𝑞𝜆: w+ 𝐽(𝑊) ⟼ 𝑤𝜆 +𝑊𝜆 and 

 𝑡𝜆:𝑊𝜆/𝐽(𝑊𝜆) ⟶ 𝑊/𝐽(𝑊)  by 𝑡𝜆: 𝑤𝜆 +𝑊𝜆⟼ 𝑖𝜆(𝑤𝜆)+ 𝐽(𝑊), then both 𝑞𝜆 and 𝑡𝜆 

are well defined since 𝑝𝜆(𝐽(𝑊)) ⊆ 𝐽(𝑊𝜆) and  𝑖𝜆(𝐽(𝑊𝜆))) ⊆ 𝐽(𝑊) respectively for 

any 𝜆 ∈∧. (it is clear that 𝑝𝜆 is ҟҟ-regular and 𝑖𝜆 is an Ş-homomorphism. See 

Proposition (2.29(2)) and the note after it). 

 Consider the following diagram for any 𝜆 ∈∧.  

 

 

 

 

 

 

(where 𝐴 and 𝐵 be two Ş-semimodules, 𝛼 a monomorphism and  𝛽𝜆 be an Ş-
homomorphism ) 

Note that 𝜋𝐽𝜆𝑝𝜆 = 𝑞𝜆𝜋𝐽              …(i)          and   𝜋𝐽𝑖𝜆 = 𝑡𝜆𝜋𝐽𝜆          …(ii) and 

 𝑞𝜆𝑡𝜆 = 1𝑊𝜆/𝐽(𝑊𝜆)              ….(iii).  for any 𝜆 ∈∧.   

So, since 𝑊 is nearly injective Ş-semimodule then there is an Ş-homomorphism 

ℎ: 𝐵 ⟶ 𝑊 such that 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝑖𝜆𝛽𝜆, for any 𝜆 ∈∧                ….(iv). 

Now, put ℎ𝜆 = 𝑝𝜆ℎ ⟹ 𝜋𝐽𝜆ℎ𝜆𝛼 = 𝜋𝐽𝜆𝑝𝜆ℎ𝛼 ⟹ 𝜋𝐽𝜆ℎ𝜆𝛼 = 𝑞𝜆𝜋𝐽ℎ𝛼    (by (i)). 

By (iv)  𝜋𝐽𝜆ℎ𝜆𝛼 = 𝑞𝜆𝜋𝐽𝑖𝜆𝛽𝜆 ⟹ 𝜋𝐽𝜆ℎ𝜆𝛼 = 𝑞𝜆𝑡𝜆𝜋𝐽𝜆𝛽𝜆   (by (ii))   

⟹ 𝜋𝐽𝜆ℎ𝜆𝛼 = 1𝑊𝜆/𝐽(𝑊𝜆)𝜋𝐽𝜆𝛽𝜆  (by (iii))  ⟹ 𝜋𝐽ℎ𝜆𝛼 = 𝜋𝐽𝜆𝛽𝜆   for any 𝜆 ∈∧.           

𝛽𝜆 

𝑖𝜆 

0 𝐴 
𝛼 

𝑊𝜆 

𝐵 

𝑊 

ℎ𝜆 

 

𝑝𝜆 

 

ℎ 

𝑞𝜆 

𝑊𝜆/𝐽(𝑊𝜆) 

𝑊/𝐽(𝑊) 
𝜋𝐽 

𝑡𝜆 

𝜋𝐽𝜆 
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Hence 𝑊𝜆 is nearly injective for any 𝜆 ∈∧. 

Conversely, assume that {𝑊𝜆}𝜆∈∧ is a family of nearly injective Ş-semimodules, for 

any 𝜆 ∈∧. 

Now, Consider the following diagram with exact row for any 𝜆 ∈∧.  

 

 

  

 

  

 

(where 𝐴 and 𝐵 be two Ş-semimodules, and 𝛽 be an Ş-homomorphism). 

So, since each 𝑊𝜆 is nearly injective Ş-semimodule, for any 𝜆 ∈∧, there is an Ş-
homomorphism ℎ𝜆: 𝐵 ⟶ 𝑊𝜆 such that 𝜋𝐽ℎ𝜆𝛼 = 𝜋𝐽𝑝𝜆𝛽                  . 

Now, put ℎ = ∏ ℎ𝜆𝜆∈∧ , then 𝜋𝐽ℎ𝛼 = 𝜋𝐽∏ (ℎ𝜆𝜆∈∧ 𝛼) ….. (v) 

Now, (v) implies 𝑞𝜆 𝜋𝐽ℎ𝛼 = 𝑞𝜆𝜋𝐽∏ (ℎ𝜆𝜆∈∧ 𝛼)   for each 𝜆, and then 

𝜋𝐽𝜆𝑝𝜆 ℎ𝛼 = 𝜋𝐽𝜆𝑝𝜆∏ (ℎ𝜆𝜆∈∧ 𝛼) for each 𝜆, but 𝑝𝜆∏ (ℎ𝜆𝜆∈∧ 𝛼)= ℎ𝜆𝛼, and 𝜋𝐽𝜆ℎ𝜆𝛼 =

𝜋𝐽𝜆𝑝𝜆𝛽, thus  

𝜋𝐽𝜆𝑝𝜆 ℎ𝛼 = 𝜋𝐽𝜆𝑝𝜆𝛽 for each 𝜆. Taking product over 𝜆 and noticing that 

∏ (𝜋𝐽𝜆𝑝𝜆)𝜆∈∧ =𝜋𝐽, it follows 

𝜋𝐽ℎ𝛼 = 𝜋𝐽𝛽 . Therefore 𝑊 = ∏ 𝑊𝜆𝜆∈∧  is nearly injective.     □ 

Proposition 3.13. Let {𝑊𝜆}𝜆∈∧ be a family of Ş-semimodules and 𝑊 =⊕𝜆∈∧𝑊𝜆, 

then: 

1. If  𝑊 is nearly injective then each 𝑊𝜆 is nearly injective. 

2.  If  each 𝑊𝜆 is nearly injective then 𝑊 =⊕𝜆∈∧𝑊𝜆 is nearly injective where ∧ is a 

finite set. 

Proof: (1) The proof is similar to the proof of necessity part of  Proposition (3.12). 

(2) Clear, since the product and coproduct coincide in the finite case, and by 

Proposition (3.12). □     

𝛽 

𝑝𝜆 

0 𝐴 
𝛼 

W 

𝐵 

𝑊𝜆 

ℎ 

ℎ𝜆 𝑊/𝐽(𝑊) 

𝑊𝜆/𝐽(𝑊𝜆) 𝜋𝐽𝜆 

𝑞𝜆 

𝜋𝐽 
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Proposition 3.14. Let {𝑊𝜆}𝜆∈∧ be a family of Ş-semimodules and 𝑊 =⊕𝜆∈∧𝑊𝜆, 

then: 

1. If  𝑊/𝐽(𝑊) is nearly injective then each 𝑊𝜆/𝐽(𝑊𝜆) is injective for each 𝜆. 

2. If  each 𝑊𝜆/𝐽(𝑊𝜆) is nearly injective then 𝑊/𝐽(𝑊) is injective, where ∧ is finite 

set.  

Proof: (1) Using the notations of Proposition (3.12), if 𝛼: 𝐴 ⟶ 𝐵 is a monomorphism 

and 𝛽: 𝐴 ⟶ 𝑊𝜆/𝐽(𝑊𝜆) is a homomorphism, since 𝑊/𝐽(𝑊) is nearly injective, there 

is ℎ: 𝐵 ⟶  𝑊/𝐽(𝑊) such that 𝜋𝐽ℎ 𝛼 = 𝜋𝐽𝑡𝜆𝛽, where 𝜋𝐽 is the natural epimorphism of 

𝑊/𝐽(𝑊) onto (𝑊/𝐽(𝑊))/𝐽(𝑊/𝐽(𝑊)). But 𝐽(𝑊/𝐽(𝑊)) = 0, so 𝜋𝐽 can be 

considered as the identity of 𝑊/𝐽(𝑊), hence we have ℎ 𝛼 = 𝑡𝜆𝛽. Put ℎ𝜆 = 𝑞𝜆 ℎ, then 

ℎ𝜆 𝛼 = 𝑞𝜆 ℎ𝛼 = 𝑞𝜆𝑡𝜆𝛽 = 1𝑊𝜆/𝐽(𝑊𝜆)𝛽  (by (iii)) for any 𝜆 ∈∧ ⟹ ℎ𝜆𝛼 = 𝛽. 

Therefore, 𝑊𝜆/𝐽(𝑊𝜆) is injective for each 𝜆 ∈∧. 

(2) Assume that {𝑊𝑘}(𝑘 =  1,… , 𝑛) is a family of Ş-semimodules with 𝑊𝑘/𝐽(𝑊𝑘) is 

nearly injective for each 𝑘. Let 𝛼: 𝐴 ⟶  𝐵  be a monomorphism and 𝛽: 𝐴 ⟶
 𝑊/𝐽(𝑊)be a homomorphism, using the notations of Proposition (3.12) and since 

each 𝑊𝑘/𝐽(𝑊𝑘) is nearly injective, there is ℎ𝑘: 𝐵 ⟶ 𝑊𝑘/𝐽(𝑊𝑘) such that 

𝜋𝑘ℎ𝑘  𝛼 = 𝜋𝑘𝑞𝑘 𝛽, for 𝑘 =  1,… , 𝑛, where 𝜋𝑘 is the natural epimorphism of 𝑊𝑘/
𝐽(𝑊𝑘) onto (𝑊𝑘/𝐽(𝑊𝑘))/𝐽(𝑊𝑘/𝐽(𝑊𝑘)). But 𝐽(𝑊𝑘/𝐽(𝑊𝑘)) = 0, so 𝜋𝑘 can be 

considered as the identity on 𝑊𝑘/𝐽(𝑊𝑘), hence we have  

ℎ𝑘  𝛼 = 𝑞𝑘 𝛽, for 𝑘 =  1,… , 𝑛. Define ℎ = ∑ 𝑡𝑘
𝑛
𝑘=1 ℎ𝑘: 𝐵 ⟶ 𝑊/𝐽(𝑊), then ℎ 𝛼 =

(∑ 𝑡𝑘
𝑛
𝑘=1 ℎ𝑘) 𝛼 

= (∑ 𝑡𝑘
𝑛
𝑘=1 ℎ𝑘𝛼) = ∑ 𝑡𝑘

𝑛
𝑘=1 𝑞𝑘 𝛽 = (∑ 𝑡𝑘

𝑛
𝑘=1 𝑞𝑘 )𝛽 = 1𝑊/𝐽(𝑊) 𝛽 = 𝛽. Therefore 

𝑊/𝐽(𝑊) is injective.  □ 

       In the following, the concept of  nearly direct summand will be introduced to get 

a new characterization of nearly injective semimodule.  

Definition 3.15. An Ş-subsemimodule 𝐹 of an Ş-semimodule 𝑊 is called nearly direct 

summand of 𝑊, if for every commutative diagram with exact rows  

 

 

 

 

(where 𝐴 and 𝐵 be two Ş-semimodules), there is an Ş-homomorphism ℎ: 𝐵 ⟶ 𝐹 such 

that 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝛽, where 𝜋𝐽: 𝐹 ⟶ 𝐹/𝐽(𝐹) is the natural epimorphism. 

Proposition 3.16. An Ş-subsemimodule 𝐹 of an Ş-semimodule 𝑊 is a nearly direct 

summand of  𝑊 if and only if, for every diagram with exact row . 

𝑔 

𝐴 0 
𝛼 𝐵 

0 𝐹 𝑊 

𝛽 
ℎ 

𝜑 

𝐹/𝐽(𝐹) 

𝜋𝐽 
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there exists an Ş-homomorphism ℎ:𝑊 ⟶ 𝐹 such that 𝜋𝐽ℎ𝛼 = 𝜋𝐽, where 𝜋𝐽: 𝐹 ⟶

𝐹/𝐽(𝐹) is the natural epimorphism. 

Proof: Assume that 𝐹 is a nearly direct summand of 𝑊. Consider the following 

diagram with exact rows 

 

 

 

Then by supposition there exists an Ş-homomorphism ℎ:𝑊 ⟶ 𝐹 such that 𝜋𝐽ℎ𝛼 =

𝜋𝐽𝐼𝑊 

This implies 𝜋𝐽ℎ𝛼 = 𝜋𝐽. 

Conversely, consider the following commutative diagram with exact rows,  

 

 

 

i.e.   𝑔𝛼= 𝜑𝛽 …. (i). Then we can extend diagram to the following diagram, 

 

 

 

 

 

𝜋𝐽 

0 𝐹 
𝛼 

ℎ 
𝐼𝐹 

𝐹 

𝑊 

𝐹/𝐽(𝐹) 

𝐹/𝐽(𝐹) 

𝜑 

𝐴 0 
𝛼 

𝐵 

0 𝐹 𝑊 

𝛽 
ℎ1 

𝑔 

𝐹 

𝐼𝐹 
ℎ 

𝜋𝐽 

𝛼 

𝐹 0 
𝛼 

𝑊 

0 𝐹 𝑊 

𝐼𝐹 
ℎ 

𝐼𝑊 

𝐹/𝐽(𝐹) 

𝜋𝐽 

𝑔 

𝐴 0 
𝛼 

𝐵 

0 𝐹 𝑊 

𝛽 

𝜑 
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By hypothesis there exists an Ş-homomorphism ℎ:𝑊 ⟶ 𝐹 such that 𝜋𝐽ℎ𝜑 = 𝜋𝐽𝐼𝐹           

….(ii).  

Put  ℎ1 = ℎ𝑔: 𝐵 ⟶ 𝐹, then we have 𝜋𝐽ℎ1𝛼 = 𝜋𝐽ℎ𝑔𝛼. Then by (i) 𝜋𝐽ℎ1𝛼 = 𝜋𝐽ℎ𝜑𝛽.   

Hence by (ii) 𝜋𝐽ℎ1𝛼 = 𝜋𝐽  𝛽. Therefore 𝐹 is a nearly direct summand of 𝑊.     □ 

       The following theorem gives another characterization of nearly injective 

semimodules. 

Theorem 3.17. The following statements are equivalent for an  Ş-semimodule 𝑊:  

1. 𝑊 is a nearly injective Ş-semimodule. 

2.  𝑊 is a nearly direct summand of every extension of itself. 

3.  𝑊 is a nearly direct summand of every injective extension of itself. 

4.  𝑊 is a nearly direct summand of at  least one injective extension of itself. 

Proof: (1) ⟹ (2) Assume that 𝑊 is a nearly injective Ş-semimodule . 

Let 𝑊1 be any extension of 𝑊, consider the following diagram with exact row, 

 

 

 

 

Since 𝑊 is a nearly injective Ş-homomorphism, there exists an Ş-homomorphism 

 ℎ: 𝑊1⟶𝑊 such that  𝜋𝐽ℎ𝛼 = 𝜋𝐽𝐼𝑊⟹ 𝜋𝐽ℎ𝛼 = 𝜋𝐽. 

That is 𝑊 is nearly direct Summand of 𝑊1 by Proposition (3.16). 

(2) ⟹ (3) and (3) ⟹ (4) are obvious. 

(4) ⟹ (1) Assume that 𝑊 is a nearly direct summand of one injective extension say 

𝑊1. 

Consider the following diagram with exact row, 

 

 

 

 

𝑊/𝐽(𝑊) 

𝑔 𝜑 

0 𝐴  
𝛼 

ℎ 𝑊 

𝐵 

𝑊1 

𝛽 

𝜋𝐽 

ℎ1 

𝜋𝐽 

0 𝑊 
𝛼 

ℎ 
𝐼𝑊 

𝑊 

𝑊1 

𝑊/𝐽(𝑊) 
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(Where 𝐴 and 𝐵 be two Ş-semimodules and 𝛽: 𝐴 ⟶ 𝑊 be any Ş-homomorphism). 

Since 𝑊1 is an extension of 𝑊 thus, there is an Ş-monomorphism, say 𝜑:𝑊 ⟶𝑊1.  

By injectivity of 𝑊1, there exists an Ş-homomorphism ℎ: 𝐵 ⟶ 𝑊1 such that ℎ 𝛼 =
𝜑 𝛽     …(i)  

Now, since 𝑊 is a nearly direct summand of 𝑊1, thus there exists an Ş-
homomorphism. 𝑔:𝑊 ⟶𝑊1 such that 𝜋𝐽𝑔𝜑 = 𝜋𝐽      …(ii)    (by Proposition 

(3.16)). 

Put  ℎ1 = 𝑔ℎ: 𝐵 ⟶ 𝑊, then we have 𝜋𝐽ℎ1𝛼 = 𝜋𝐽𝑔ℎ𝛼 ⟹ by (i) 𝜋𝐽ℎ1𝛼 = 𝜋𝐽𝑔𝜑 𝛽 

Hence by (ii) 𝜋𝐽ℎ1𝛼 = 𝜋𝐽  𝛽. Therefore 𝑊 is nearly injective Ş-semimodule. □ 

Corollary 3.18. Let 𝑊 be a 𝒴𝒞𝒮-semimodule which is contained in an injective Ş-
semimodule, then 𝑊 is nearly injective if and only if 𝑊 is a nearly direct summand of 

𝐸(𝑊) (where 𝐸(𝑊) is the injective envelope of  𝑊). 

Proof: Since W is contained in an injective Ş-semimodule, then it has an injective 

envelope, say 𝐸(𝑊). The proof follows from the equivalence of (1) and (4) of 

Theorem 3.17.      □ 

       In the following, the concept of  nearly split will be introduced to get a new 

characterization of nearly injective semimodule. 

Definition 3.19. Let 𝐴 and 𝐵 be two Ş-semimodules. An Ş-homomorphism 𝛼: 𝐴 ⟶ 𝐵 

is called nearly split if there is an Ş-homomorphism 𝛽: 𝐵 ⟶ 𝐴 such that 𝜋𝐽𝛽𝛼 = 𝜋𝐽, 

where 𝜋𝐽:𝑊 ⟶ 𝑊/𝐽(𝑊) is the natural epimorphism. 

       The following theorem gives another characterization of nearly injective 

semimodules. 

Theorem 3.20. Let 𝑊 be a 𝒴𝒞𝒮-semimodule which is contained in an injective Ş-
semimodule, then the following statements are equivalent for an Ş-semimodule 𝑊: 

1. 𝑊 is a nearly injective Ş-semimodule. 

2.  For each Ş-semimodule 𝐹, every Ş-monomorphism 𝛼:𝑊 ⟶ 𝐹 is a nearly split. 

3.  For each nearly injective Ş-semimodule 𝐹, every Ş-monomorphism 𝛼:𝑊 ⟶ 𝐹 is 

a nearly split. 

4.  For each injective Ş-semimodule 𝐹, every Ş-monomorphism 𝛼:𝑊 ⟶ 𝐹 is a 

nearly split. 

5.  Every Ş-monomorphism 𝛼:𝑊 ⟶ 𝐸(𝑊) is  nearly split (where 𝐸(𝑊) is the 

injective envelope of  𝑊. 

Proof: (1) ⟹ (2) Assume that 𝑊 is nearly injective Ş-semimodule and 𝛼:𝑊 ⟶ 𝐹 

be any Ş-monomorphism (where 𝐹 is any Ş-semimodule. Consider the following 

diagram, 
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Since 𝑊 is  nearly injective, thus there exists an Ş-homomorphism  ℎ: 𝐹 ⟶ 𝑊 such 

that 

 𝜋𝐽ℎ𝛼 = 𝜋𝐽𝐼𝑊 = 𝜋𝐽. Therefore 𝛼 is nearly split by Definition (3.19). 

(2) ⟹ (3), (3) ⟹ (4) and (4) ⟹ (5) are obvious. 

(5) ⟹ (1) Assume 𝛼:𝑊 ⟶ 𝐸(𝑊) is a nearly split.  

Since 𝐸(𝑊) is an extension of 𝑊 by Proposition (2.25), thus there exists an Ş-
monomorphism, say  𝛼: 𝑊 ⟶ 𝐸(𝑊). Consider the following commutative diagram 

with exact row,  

 

 

 

 

Now, by injectivity of 𝐸(𝑊), there exists an Ş-homomorphism. ℎ: 𝐵 ⟶ 𝐸(𝑊) such 

that ℎ𝜑 = 𝛼𝛽       ….(i). But by assumption 𝛼:𝑊 ⟶ 𝐸(𝑊) is nearly split, then there 

is an Ş-homomorphism. 𝑔: 𝐸(𝑊) ⟶ 𝑊 such that 𝜋𝐽𝑔𝛼 = 𝜋𝐽       ….(ii). 

So, put  ℎ1 = 𝑔ℎ: 𝐵 ⟶ 𝑊, then we have 𝜋𝐽ℎ1𝜑 = 𝜋𝐽𝑔ℎ𝜑. It follows by (i) 𝜋𝐽ℎ1𝜑 =

𝜋𝐽 𝑔𝛼𝛽 ⟹ 𝜋𝐽ℎ1𝜑 = 𝜋𝐽 𝛽   by (ii). Hence 𝑊 is  nearly injective Ş-semimodule.     

 

 

 

 

 

 

 

 

 

 

 

𝜋𝐽 

0 𝑊 
𝛼 

ℎ 
𝐼𝑊 

𝑊 

𝐹 
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𝑔 𝛼 
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 الخلاصة
قد تم فخرى, من ناحية افي الفترة الماضية تم دراسة مفهوم الاغمار في فئة شبه المقاسات على شبه الحلقة من قبل عدد من الباحثين.  

 ذرلى الجتعميم مفهوم الاغمار في فئة المقاسات على الحلقة في عدة اتجاهات مختلفة . على الخصوص المقاسات الاغمارية بالنسبة ا
 الابتدائي هي بعض من تلك التعميمات.

حيث  بالتناظر مع نظرية المقاسات, استحدثنا ودرسنا في هذا البحث مفهوم شبه المقاس الاغماري نسبة الى جذر جاكوبسن       
 اسميناه شبه المقاس الاغماري تقريبا.

 ريبا. مركبة جمع مباشر تقريبا, تشاكل منشطر تق شبه مقاس مطروح, جذر جاكوبسن,  شبه مقاس اغماري تقريبا, :دالةالكلمات ال

 


