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Abstract

An injectivity in the category of semimodules over semiring was studied by many authors recently.
On the other hand, the concept of injectivity, in the category of modules over ring, was generalized in
many different directions. In particular, injective modules relative to preradical were some of those
generalizations.

As an analogue to module theory, in this paper, we introduce and investigate the notion of
"injective semimodule relative to Jacobson radical (namely nearly injective semimodule)”.
Key words: subtractive semimodule; Jacobson radical; nearly injective semimodule; nearly direct
summand; nearly split homomorphism.

1. Introduction

Throughout this work, $ stands for a commutative semiring with identity and a
semimodule means a unitary left S-semimodule. An S-subsemimodule L of an S-
semimodule A is called subtractive if for all a,a’ € A, a+a’,a € L impliesa’ € L, it
is clear that 0 and A are subtractive S-subsemimodules of A. An S-semimodule A4 is a
subtractive S-semimodule if it has only subtractive subsemimodules [1]. For convince
all S-semimodules assumed in this work will be considered subtractive.

An S-semimodule W is called injective if for every S-monomorphism a: A — B
and for each S-homomorphism g: A — W, there is an S-homomorphism h:B — W
such that ha = B[1].

In 2000, nearly injective modules were discussed in [2] as a generalization of
injective modules. A module W is called nearly injective, if for every monomorphism
a: A — B (where A and B are two modules) and for each homomorphism g: A — W,
there is a homomorphism h: B — W such that (ho a)(x) — B(x) € J(W),Vx € A
where J(W) is the Jacobson radical of the module W, which is defined to be the
intersection of all maximal submodules of /.

As an analogue to the case in modules, nearly injective semimodule, is introduced
in this work. An S-semimodule W is called nearly injective, if for every S-
monomorphism a:A — B (where A and B are two S-semimodules), each S-
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homomorphism g:A — W, there is an S-homomorphism h:B — W such
that m ha = m; 5, where m;: W — W /J(W) is the natural epimorphism, and J(W) is
the Jacobson radical of W. As in modules J(W) is the intersection of all maximal S-
subsemimodules of W.

Many properties and characterizations of nearly injectivity were investigated. The
main results of this work are: It is shown that these semimodules are closed under
arbitrary direct product, finite direct sum and direct summand. Nearly direct summand
with proof that an S-semimodule W is nearly injective if and only if, it is a nearly
direct summand of every extension of itself. Therefore the nearly split homomorphism
with proof that an S-semimodule W is nearly injective if and only if, for each S-
semimodule F, every S-monomorphism a: W — F is nearly split.

In addition to section 1, there are two sections. Section 2 consists the
preliminaries that are needed in the investigations. Some of these were found in the
literatures. In section 3, injective S-semimodule and their properties and
characterizations were given.

2- Preliminaries

In this section same definitions, their properties and characterizations of these S-
semimodules needed in this work.

Definition 2.1 [3]. Let $ be a semiring. A left S-semimodule Ag is a commutative

monoid (4, +,0) for which we have a function $ X A — A, defined by (s,a) » sa
suchthatVvs,t € Sanda,a’ € A4,

1. s(a+a") =sa+sa.
2. (s+t)a=sa+ta.
3. (st)a = s(ta).

4. O0ga =0, =s0,.

If 1ga = a holds for each a in A then a left S-semimodule A is called unitary.

Definition 2.2 [3]. Let L be a subset of a left S-semimodule A then L is called
subsemimodule of A if L is closed under addition and scalar multiplication. In this
case it is denoted by L < A.

Definition 2.3 [3] An S-subsemimodule L of an S-semimodule A is called subtractive
ifforalla,a’ € A a,a+a’ €L impliesa’ € L.

An S-semimodule A is a subtractive S-semimodule if it has only subtractive
subsemimodules.

Definition 2.4 [4] An S-semimodule A is called yoked if for all a,b € A there exists
c€Asuchthata=b+cora+c=0>b.

Definition 2. 5 [4] An S-semimodule A is additively cancellative if a+c=b+c =
a=bh.
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We denote to the S-semimodule that possess the three conditions, yoked,
cancellative and subtractive by YCS-semimodule.

Definition 2.6 [5] An S-subsemimodule L of an $-semimodule A is called a direct
summand of A if there exists S-subsemimodule K such that A = L@®K and A is called
a direct sum of L and K.

Definition 2.7 [3] Let A and B be S-semimodules. A homomorphism from A to B is a
map ¢: A — B such that

1. p(a+a") = ¢(a)+ ¢(a")and
2. @(sa) =s@(a) Vaa €Aands €S.

For a homomorphism of S-semimodules ¢ : A — B we define:

1. ker(p) = {a € Alp(a) = 0}.

2. @A) ={p(a)la € A)}.
3. Im(p)={beB|b+ f(a)=f(a") forsome a, a'e A}.

A homomorphism of S-semimodules ¢ : A — B isa:

1. monomorphism, if for any S-semimodule L and S-hhomomorphism's af:L - A
with @ cax = @ o 3, we have a = .

2. epimorphism, if for any S-semimodule K and S-homomorphisms «,f:B = K

with @ o @ = 8 o @, we have a = .

isomorphism if ¢ is monomorphism and epimorphism.

image regular (i-regular), if p(A) = Im(¢p).

5. kernel regular (2-regular) if p(a) = ¢(a’) = a+ k = a’ + k' for some, k, k' €
ker(¢).

6. regular if ¢ isi-regular and @-regular.

»>w

Definition 2.8 [3] The (possibly infinite) sequence of S$ —semimodules

¢ Pit+1 Pit2 . .
Ao Ay — A ,—... 1s said to be:

1. exact, if Imo; = kerg; Vi€l
2. proper exact, if ¢;(A;) = kerp; Vi€l

Proposition 2.9 [3] Let A and B be S-semimodules, then a homomorphism of S-
semimodules ¢: A — B is:

1. injective if and only if it is a monomorphism.
2. surjective if and only if it is epimorphism and ¢ (A4) S B is subtractive.

Lemma 2.10 [3] Let A4, B be S-semimodules and ¢ € Homg(A, B) , then

1. Im(¢) is subtractive.
2. @(A) is subtractive if and only if p(A) = Im(p).
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The following two lemmas and corollary had been proved for modules (see e.g. [6,
pp.60-61]), but for semimodules they need extra conditions and then new converted
proofs that were not found in the literatures.

Lemma 2.11 Let A and B be YCS-semimodule and ¢ € Homg(A,B) be an §-
homomorphism then,

1 ifLo A= ¢ (L)) = L + ker(p).
2. ifKoB= ¢(e 1 (K)) =K nIm(p).

Proof: (1) Letx € 91 (@(L)) = ¢(x) € p(L) = ¢(x) = ¢(1) lelL.

Then, either x = [ + k.

= o)+ ek) =¢p(l) = k) =0=k € ker(p) = x € L+ ker(p).
Orx+k=1=¢kx)=px)+¢ok) = @lk)=0= k€ ker(p)

= 1l€L+ker(p) AN k €L+ ker(p)= x €L+ ker(p), by subtractive property.
Thus x € L + ker(¢p) (in any case). The other direction is clear.

(2) From set theory ¢(p~1(K)) = K n ¢(A), by subtractive property ¢(A)=Im(¢).
O

Lemma 2.12 Let A and B be YCS-semimodule and the following diagram be

commutative o
A—.B

Bl
K h

w

(i.e. B = ha) then,

1. Im(a) +ker(h) = ™1 (Im(B))
2. Im(a) nker(h) = a(ker(ﬁ))

Proof: (1) let § = ha = Im(B) = Im(ha) = h(Im(a))
= h~(Im(B)) = h~* (h(Im(a))) = Im(a) + ker(h) by Lemma(2.11(1)).
(2) Let ker(B) = ker(ha) = a t(ker(B)).

= a(ker(B)) = a(a"t(ker(B))) = Im(a) N ker(h) by Lemma(2.11(2)).
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Corollary 2.13 Let A and B be YCS-semimodule and the following diagram be
commutative

(i.e. ha = B) then, A—» B
X h
w

1. B isepimorphism = Im(a) + ker(h) = B.
2. [ is monomorphism = Im(a) N ker(h) = 0.
3. pisisomorphism = Im(a)® ker(h) = B.

Proof: consequently from Lemma (2.12). o
Definition 2.14 [1] An S-semimodule A is called injective if for every S-

monomorphism a: A — B and for each S-homomorphism §: A — W, there is an S-
homomorphism h: B — W such that the following diagram is commutative

a
0—>A—>B
Bl
'Y h
(i.e. ha = B). w

Definition 2.15. [1]. An S-semimodule A is called E-injective if for every S-
monomorphism a: A — B and for each S-homomorphism g: A — W, there is a B-
regular S-homomorphism h:B — W such that the following diagram be
commutative

(i.e. ha = B).
Clearly if W is called B-injective then W is injective.

Proposition 2.16. [1] Let {W;},e, be a family of S-semimodules then [ e, W5 is
injective if and only if each W, is injective. O

Proposition 2.17. Let {W;},c, be a family of S-semimodules and W =@ e, Wh,
then:

1. If W isinjective then each W, is injective.
2. If each W, is injective and A is finite set then W is injective.
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Proof: (1) The proof is similar to the proof of the necessity part of Proposition (2.16).

(2) Clear. Since the product and coproduct coincide in the finite case, and by
Proposition(2.16).

Definition 2.18.[7]. Let W be an S-semimodule. An S-subsemimodule A of W is
called large (essential) S-subsemimodule of W if for every S-subsemimodule U of W
, ANU = 0 implies U = 0, in this case we say that W is an essential extension of A.
W is called maximal essential extension of A if whenever L is a proper extension of
W then L is not an essential extension of A. Note that we shall denote the statement
A is a large subsemimodule A of the S-semimodule W " by A <, W.

Definition 2.19. An injective S-semimodule W is called minimal injective extension
of an S-subsemimodule A if W is an extension of A and whenever L is a proper
subsemimodule of W which contains A then L is not injective.

The following statement is true for any module, see for example [6, pp. 114], but
for semimodules the subtractive condition is needed and we have to give a
corresponding proof.

Lemma 2.20. Let W be a subtractive S-semimodule. If A is a subsemimodule of W
and B is a subsemimodule of W maximal with the property AN B =0, then
A®B <, W.

Proof: Assume that both A and B are subsemimodules of the subtractive S-
semimodule W and B is maximal with the property An B = 0. Then it is clear that
A+ B = A®B. If C is a subsemimodule of W and (A + B) n C = 0, then we have
ANnC=0and BNC=0. We claim that An(B+C)=0. For if ae An (B +
C)=0,thena=b+cwithae A,beBandc €C.

Now, a € A implies a€ A+ B andb € B implies b€ A+ B. SinceA+ B is
subtractive, we must have c€e A+ B,soc € (A+ B)Nn C) = 0, that is c = 0. Hence
a=beANB=0.

By maximality of B, it follows B + C = B and since B n C = 0, we have C = 0.
Therefore A@B <, W. o

Note: Analogue to the case in modules, such subsemimodule B (with the property
given in the previous lemma will be called an intersection complement of A in W
(shortly inco of A in W), see [6, D. 5.2.1]. As in the proof above an inco of a given
subsemimodule, always exists.

Proposition 2.21. Let W be a YCS-semimodule and contained in an injective S-

semimodule then W is injective if and only if it is a direct summand of every
extension of itself.
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Proof: Suppose that W is injective and A is a proper extension of W, consider the
following diagram. Where « is a monomorphism

wW—>A

04

|14

Such that ha = I, = Im(a) is direct summand in A (Corollary (2.13)).

Since a is a monomorphism, W = Im(a), hence W is direct summand in A.
Conversely, suppose that W is direct summand of every extension of it.

Now, since W is contained in an injective S-semimodule then W has an injective
extension S-semimodule. say L. Thus W will be a direct summand of L and so will be
injective by proposition (2.16). ©

Proposition 2.22. Let W be an essential extension of A and let B an injective
extension of A then the inclusion mapping of A into B can be extended to an
embedding of W in B.

Proof: The same proof as in the case of modules (see [8, pp.41]). O

Proposition 2.23. Let A be an S-semimodule and B an injective extension of A then B
has subsemimodule W which is a maximal essential extension of A.

Proof: The same proof as in the case of modules (see[8, pp.42]). o
The proof of the following Theorem (2.24) and Proposition (2.25) are similar to
the case of modules, by considering extra condition that it is needed for semimodules

(see[8, pp.43]). For completeness we give a full proof.

Theorem 2.24. Let W be a YCS-semimodule and contained in an injective S-
semimodule, then W is injective if and only if it has no proper essential extension.

Proof: Suppose that W is injective and let L be a proper extension of W/

Now, by Proposition (2.21) W is direct summand of L, so it cannot be essential in L.
Conversely, suppose that W has no proper essential extension.

Now, let L be any extension of W, and Let K be an inco of W in L. (we assume that L

is a proper extension of W). Then L/K 2 (W @ K)/K = W (by the isomorphism
theorem see [6]).
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That is L/K is an extension of W, and so by assumption W is not essential in L/K
((W @ K)/K is not essential in L/K ). Then there exists Y € L such that Y/K n
(W @ K)/K = 0 whichimpliesY n (W @ K) =K.
HenceYNW S KNW=0=YnNnW=0AY2K.

Which contradicts the maximality of K. So, L =W @ K.

Since L is an arbitrary extension of W, thus W is a direct summand of any extension of
it.

Therefore by Proposition (2.21) W is injective.

Proposition 2.25. Let W be a YCS-semimodule which is contained in an injective S-

semimodule. If A is an S-semimodule contained in W, then the following statements
are equivalent:

1. W isan essential injective extension of A.
2. W is a maximal essential extension of A.
3. W isaminimal injective extension of A.

Proof: (1) & (2) is obvious from Theorem (2.24).

(2) = (3). Assume, W is a maximal essential extension of A. Then W must be
injective by Theorem (2.24).

Let U be an injective extension of A contained in W. Then W is an injective
extension of U, so W = U by Theorem (2.24) applied to U.

Hence W is a minimal injective extension of A.
(3) = (1) Assume, W is a minimal injective extension of A.

Now, by Proposition (2.23) W has a subsemimodule L which is a maximal essential
extension of A and so injective it follows that L = W and (1) is established. ©

An S-semimodule W satisfying the conditions of Proposition (2.25) is called an
injective envelope (or injective hull) of A (if it exists), we use the notation E(A) to
stand for an injective envelope of A [9].

Recall that a maximal S-subsemimodule of a semimodule A is a subsemimodule
of A that is not contained properly in any other proper subsemimodule of A.

Definition 2.26[10]. Let W be an S-semimodule and A be a non-zero S-
subsemimodule of W. We say that A is a small (superfluous ) S-subsemimodule of W
if for every S-subsemimodule U of W, A+ U = W implies U = W. Then we shall
denote a small S-subsemimodule L of S-semimodule A by L < A.
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Definition 2.27[10]. Let A be an S-semimodule, the Jacobson radical of A is denoted
by J(A) and defined as

J(A) = ﬂ{L : L is a maximal subsemimodule of A}.

LEA

Proposition 2.28[10]. Let A be an S-semimodule, then

Z L= ﬂ {M:is a maximal subsemimodule of A}.

LA McA

Proposition 2.29[10]. Let A be an S-semimodule and J is a Jacobson radical of A
then:

1. J(A) - A. Inparticular,

2. Let A and B be subtractive $-semimodules and ¢ € Homg(A4, B) be BIR-regular $-
homomorphism (¢ is an epimorphism and @-regular), then ¢ (J(A4)) € J(B), in
particular if L & A then J(L) < J(A).

3. J(4/](A)) = 0.

Note: The Proposition (2.29(2)) is true when ¢ be an S-monomorphism (see[11]).
3- Nearly injective S-semimodules:

Definition 3.1. An S-semimodule W is called nearly injective, if for every S-
monomorphism a:A — B (where A and B are two S-semimodules), each §S-
homomorphism g:A — W, there is an S-homomorphism h:B — W such
that m;ha = m; 8, where r;: W — W /J(W) is the natural epimorphism and J(W) is
the Jacobson radical of W.

Examples and Remarks 3.2.

1. every injective semimodule is nearly injective.

2. every @ -injective semimodule is nearly injective.

3. Every S-semimodule which has no maximal subsemimodule is nearly injective.
4. ltisclear thatif J(W) = 0 then W is injective if and only if it is nearly injective.
5. IfW; = W,, and W, is nearly injective then W, is nearly injective, too.

6
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Proposition 3.3. An S-semimodule W is nearly injective if and only if, for any
diagram

i
A—» B

p
l/
y
y
" h
'Y

w

J

w/jw)
(where A is an S-subsemimodule of B and i is the inclusion mapping) there exists an
S_

homomorphism h: B — W such that m;hi = m; 5, wherer,;: W — W /(W) is the
natural epimorphism.

Proof: The necessity is clear.

Sufficiency: consider the following diagram

a
A— B

g
.
g
.
.
“ h
,
/¢

w

g

w/jw)
(with a is an S-monosophism and £ is homomorphism).

Now, we define ¢: A — a(A) that is i¢ = a (where i: a(A) — B is the inclusion
mapping).

Thus we have the following diagram.

0] i

Then by supposition there exists an $-homomorphism h: B — W such that ;8¢ ™" =

= m;Bp " ¢ = myhi ¢ = m;B = m;ha. Hence W is nearly injective. o
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Proposition 3.4. Let W be an S-semimodule, then the following statements are
equivalent:

1. W is nearly injective S-semimodule.
2. For every diagram,

{
0O—>»A—» B

w
Tl.'] l

w/jw)

Where i is the inclusion map and g is any homomorphism, there exists an S-
homomorphism h:B — W such thatm hi = fm;, wherem;: W — W /J(W) is the
natural epimorphism.

3. For every diagram with 4 <, B,

i
0O—>»A—» B

w

|

w/jWw)

There exists an $-homomorphism h: B — W such that ;hi = pm;, wherer;: W —
W /] (W) is the natural epimorphism.

Proof: (1) < (2) is by Proposition (3.3) (2) = (3) is obvious.

(3) = (1), given any diagram with exact row, and B:A — W be any §S-
homomorphism. a
0—>A—> B

w

|

w/jw)

Let p: A — a(A) defined by ¢(a) = a(a) for all a in A, then ¢ is an isomorphism,
ip = a, where i: «(A) — B is the inclusion map. Consider the following diagram,
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) J i
0 » A » a(A) » D—— B
o7t T T
B| Belm T
T h
v Ar’/ ,,,,,,
W a”
y
v
w/w)

If a(A) is essential in 5, men py (3) there exists h: B — W such that hi = ;B!
and so 1;hip = m;Be~ ¢ which implies w;ha = ;.

If @(A) is not essential in B, then by Lemma (2.20), D = a(A)®C <, B, where C is
an inco of a(A) in B. Consider the mappings j:¢@(A) — D, the natural
injection; m: D — ¢(A) the natural projection; and i: D — B, the inclusion map. By
(3), there exists h: B — W such that m;hi = m; Bo~'m, then m;hijo = m; Bo~'mjg,
note that:

o =a;mj =1y ; ¢ "¢ = 14,50 we have mha = m;f3.
Therefore W is nearly injective S-semimodule. ©
Corollary 3.5. An S-semimodule W is nearly injective if and only if, for every

diagram with A <, B _
l
0o—>»A—>» B

w
y

w/jw)

there exists an $-homomorphism h: B — W such that 7;hi = m;, where r;: W —
W /] (W) is the natural projection and J(W) is the Jacobson radical of W. o

Proposition (3.11) we will give another characterization of nearly injective S-
semimodules by using the class of free semimodules , so we need to mention the
following definitions in [12].

Definition 3.6. A set X is called a generated set of the semimodule A4, if A is the
smallest subsemimodule containing X, in this case we right A = (X).

Remark 3.7. A = (X) ifand only if Va € A,a = Y finite SixXi, Si € S,x; € X.
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Definition 3.8. A set A is called a free set if for each {a,,a,,as, ... ... ....,a,} € A(n
a positive integer), the combination 3.7, s;a; = 0 implise s; = 0 Vi.

Definition 3.9. A set A is called a basis of the semimodule W if it is a free generating
setof W.

Definition 3.10. A semimodule W is called a free-semimodule if it has a basis.

Proposition 3.11. An S-semimodule W is a nearly injective if and only if, for every
diagram with exact row and B is a free S-semimodule

a
0O—>»A—» B

w
Uy

w/jw)

there exists an $-homomorphism h: B — W such that n;ha = m;, where r;: W —
W /] (W) is the natural projection and J(W) is the Jacobson radical of W.

Proof: Necessity is clear.

Sufficiency: Consider the following diagram with & a monomorphism and F = § (B0,

0—A —ag,B AF

|

A
w

n,l
w/jWw)
Then F is a free S-semimodule, and B can be considered as a subsemimodule of F.

Therefore by hypothesis there exists an S-homomorphism h: F — W such that
mhia = ;8 ...(1).

So, put hy = hi:B — W, then we have m;h;a = myhia. It follows that by (i)

Hence W is nearly injective S-semimodule. o
Now, we will study the direct product and the direct sum of nearly injective
semimodules. The following propositions shows that this result is true in case of

nearly injective semimodules.
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Proposition 3.12. Let {W;},c, be a family of S-semimodules and W = [[1ex Wa,
then W is nearly injective if and only if each W, is nearly injective.

Proof: Assume that W = [[,e, W is nearly injective S-semimodules.

Now, we will denote the natural projections, W onto W /J (W) by m;and W, onto W, /
J(W)) by m;, forany 4 €A.

Let Pj: W — W, and i: W, — W be the projections and injections associated with
this direct product respectively for any 1 €A.

Define qx: W/](W) — W/’l/](Wl) by q: W+](W) —w, + W, and

ty: W)l/](W)L) — W/](W) by twy + W, — llll(W,l)‘F](W), then both qx and t)
are well defined since p,(J(W)) € J(W;) and i;(J(Wy))) < J(W) respectively for
any A €A. (it is clear that p, is B@-regular and i; is an S-homomorphism. See
Proposition (2.29(2)) and the note after it).

Consider the following diagram for any 1 €A.

a
0 » A :.B
ﬁl h’l '.:....." ..'
A \ 4 ; i
WiJ WD) «———w, £ h
t; 01 2 Tm
v ¥
WIW) e—0 W

]
(where A and B be two S-semimodules, « a monomorphism and fS; be an S-

homomorphism )
Note that m;yp; = qam; ...(1) and m;i; = 61, ...(1i1) and

qata = lw,/yawyp ....(ii1). forany A €A.

So, since W is nearly injective S-semimodule then there is an S-homomorphism
h: B — W such that T ha = m;i;5;, for any 1 €A ....(1v).

Now, put hl = plh = n],lh,la = n],lp,lha = Tl.']/lhl(l = q/ﬂ'[]ha (by (l))
By (iv) mama = g8 = npaha = qatamga B (by (i)
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Hence Wj is nearly injective for any 1 €A.

Conversely, assume that {IW,},¢ is a family of nearly injective S-semimodules, for
any A eA.

Now, Consider the following diagram with exact row for any 1 €A.

0—>4 —> B
T Iy
wiyw) «—I—w 7y,

Wi/J W) *——— W)
A

(where A and B be two S-semimodules, and £ be an S-homomorphism).

So, since each W, is nearly injective S-semimodule, for any A €A, there is an S-
homomorphism h;: B — W), such that m;hya = m;p,

Now, put h = H)lE/\ hy, then T[]ha =1 l_[lE/\(hxl a).....(v)
Now, (v) implies g, myha = qum; [11en(hy @) for each 4, and then

TTAPa ha = TTAPa HlE/\(h)L a:) for each A, but Pa H/lE/\(hl Of): h,la, and 7T]/1h/10.’ =
T[];Lplﬁ, thus

myapp ha = mpaB for each A, Taking product over A and noticing that
[Taen(mjapa)=m;, it follows

myha = m; [ . Therefore W = [[;e, W, is nearly injective. o

Proposition 3.13. Let {W;},e, be a family of S-semimodules and W =@, W),
then:

1. If W isnearly injective then each W, is nearly injective.
2. If each W, is nearly injective then W =@ ;5 W, is nearly injective where A is a
finite set.

Proof: (1) The proof is similar to the proof of necessity part of Proposition (3.12).

(2) Clear, since the product and coproduct coincide in the finite case, and by
Proposition (3.12). o
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Proposition 3.14. Let {W;},c, be a family of S-semimodules and W =@ ;e\ Wh,
then:

1. If W/J(W) is nearly injective then each W, /J(W,) is injective for each A.
2. If each W, /J(W,) is nearly injective then W /J(W) is injective, where A is finite
set.

Proof: (1) Using the notations of Proposition (3.12), if a: A — B is a monomorphism
and B: A — W, /J(W,) is a homomorphism, since W /J(W) is nearly injective, there
ish:B — W/J(W) such that m;h & = m;t; 8, where m; is the natural epimorphism of
w/jW) onto (W/JW))/J(W/J(W)). But J(W/J(W))=0, so m; can be
considered as the identity of W /J (W), hence we have h a = t;. Put hy = q, h, then
hya =q; ha = quta8 = 1w,/ ;wpB (by (iii)) forany 1 eA = ha = .
Therefore, W, /] (W) is injective for each A €A.

(2) Assume that {W; }(k = 1,...,n) is a family of S-semimodules with W, /J(W},) is
nearly injective for each k. Let a:A — B be a monomorphism and S:4 —
W /J(W)be a homomorphism, using the notations of Proposition (3.12) and since
each Wy /] (W, ) is nearly injective, there is hy: B — W, /] (W) such that

m h, a = mq B, for k= 1,...,n,where m; is the natural epimorphism of W,/

JWy) onto (W /J(Wi)) /] (Wi /](Wi)). But J(Wy/J(Wy)) =0, so m can be
considered as the identity on W, /J (W), hence we have

h,a=qyB, for k= 1,..,n. Define h=Y}_ ty hy:B — W/J(W), then ha =
k=1t i) a

= k=1t hea) = X1t e B = Qk=1tx 9 )B = 1wy B = B- Therefore
W /J(W) is injective. O

In the following, the concept of nearly direct summand will be introduced to get
a new characterization of nearly injective semimodule.

Definition 3.15. An S-subsemimodule F of an S-semimodule W is called nearly direct
summand of W, if for every commutative diagram with exact rows

0—>A—a’,B

gl
n|?
K

0O—>»F —W
F/J(F)

(where A and B be two S-semimodules), there is an S-homomorphism h: B — F such
that m;ha = m; 8, where ;: F — F /] (F) is the natural epimorphism.

Proposition 3.16. An S-subsemimodule F of an S-semimodule W is a nearly direct
summand of W if and only if, for every diagram with exact row .
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Ty
F/](F)

there exists an $-homomorphism h:W — F such thatm,ha = m;, where m;: F —
F /J(F) is the natural epimorphism.

Proof: Assume that F is a nearly direct summand of W. Consider the following
diagram with exact rows

a
0—>F —>W

I ey
Ik
K
0O—»F —aP w
W

Then by supposition there exists an $-hon  F//(F)  h:W — F such that m;ha =
Ly

This implies ;ha = m;.

Conversely, consider the following commutative diagram with exact rows,

0—>A—a> B
ﬁl lg
0O—>»F —W

i.e. ga=@p ....(1). Then we can extend diagram to the following diagram,

¥
0—»F —(p>,W
Ip h
T[] K
F/](F) «——F
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By hypothesis there exists an $-homomorphism h: W — F such that mhe = m;lp

.10,
Put hy = hg: B — F, then we have m;h;a = m;hga. Then by (i) m,hya = m;hep.
Hence by (ii) m;hya = m; B. Therefore F is a nearly direct summand of W. o

The following theorem gives another characterization of nearly injective
semimodules.

Theorem 3.17. The following statements are equivalent for an S-semimodule W:
1. W isanearly injective S-semimodule.

2. W isanearly direct summand of every extension of itself.

3. W isanearly direct summand of every injective extension of itself.

4. W isanearly direct summand of at least one injective extension of itself.

Proof: (1) = (2) Assume that I/ is a nearly injective S-semimodule .

Let W, be any extension of W, consider the following diagram with exact row,

a
00— W— W,

vl
7 4

w

g

w/jw)

Since W is a nearly injective S-homomorphism, there exists an S-homomorphism
h: Wy — W such that 7 ha = m;ly, = mha = m,.

That is W is nearly direct Summand of W, by Proposition (3.16).
(2) = (3) and (3) = (4) are obvious.

(4) = (1) Assume that W is a nearly direct summand of one injective extension say
w;.

Consider the following diagram with exact row,

a
0—>A—> B

wywyw. S h

>
Wy
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(Where A and B be two S-semimodules and $: A — W be any S-homomaorphism).
Since W is an extension of W thus, there is an S-monomorphism, say ¢: W — W;.

By injectivity of W;, there exists an S-homomorphism h: B — W, such that h a =

B .0

Now, since W is a nearly direct summand of W, thus there exists an §$-
homomorphism. g:W — W, such that m;,g¢ = m,; ...(i0) (by Proposition
(3.16)).

Put h; = gh: B — W, then we have m;h,a = m;gha = by (i) m;hya = m;g¢9 B
Hence by (ii) m;hya = m; B. Therefore W is nearly injective $-semimodule. o

Corollary 3.18. Let W be a YCS-semimodule which is contained in an injective S-
semimodule, then W is nearly injective if and only if W is a nearly direct summand of
E(W) (where E (W) is the injective envelope of W).

Proof: Since W is contained in an injective S-semimodule, then it has an injective
envelope, say E(W). The proof follows from the equivalence of (1) and (4) of
Theorem 3.17. o

In the following, the concept of nearly split will be introduced to get a new
characterization of nearly injective semimodule.

Definition 3.19. Let A and B be two S-semimodules. An S-homomorphism a: A — B
is called nearly split if there is an $-homomorphism f: B — A such that r;fa = m;,
where ;: W — W /J(W) is the natural epimorphism.

The following theorem gives another characterization of nearly injective
semimodules.

Theorem 3.20. Let W be a YCS-semimodule which is contained in an injective S-
semimodule, then the following statements are equivalent for an S-semimodule W

1. W isanearly injective S-semimodule.
2. For each S-semimodule F, every S-monomorphism a: W — F is a nearly split.
3. For each nearly injective S-semimodule F, every S-monomorphism a: W — F is

a nearly split.
4. For each injective S-semimodule F, every S-monomorphism a:W — F is a
nearly split.
Every S-monomorphism a:W — E(W) is nearly split (where E(W) is the
injective envelope of W.

o

Proof: (1) = (2) Assume that W is nearly injective S-semimodule and a: W — F
be any S-monomorphism (where F is any S-semimodule. Consider the following
diagram,
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a
0O—>»W—» F

IW l e '/'
" h

w

"}

w/jw)

Since W is nearly injective, thus there exists an S-homomorphism h: F — W such
that

myha = m;ly, = m;. Therefore a is nearly split by Definition (3.19).

(2) = (3),(3) = (4) and (4) = (5) are obvious.

(5) = (1) Assume a: W — E (W) is a nearly split.

Since E(W) is an extension of W by Proposition (2.25), thus there exists an S-

monomorphism, say a: W — E(W). Consider the following commutative diagram

with exact row, 0
0—>A—> B
gl h/

» 7
T /
wywyeLw Jh

a lT‘q IIII
»

EW)
Now, by injectivity of E(W), there exists an S-homomorphism. h: B — E (W) such
that hgp = af ....(1). But by assumption a: W — E (W) is nearly split, then there
is an $-homomorphism. g: E(W) — W such that m;ga = T, ....(ih).

So, put hy = gh: B — W, then we have m;h, ¢ = m;ghe. It follows by (i) m;h ¢ =
m; gaf = mhy = m; B by (ii). Hence W is nearly injective $-semimodule.
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