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Abstract 
The aim of this work is to present method of the Block-pulse function approach to numerical 

solution of Volterra integral equations with delay. This method is used to obtain numerical solution. 

Moreover, programs for his method is written in MATLAB language. An error analysis is worked out 

and applications demonstrated through illustrative examples. 
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1- Introduction 

Delay Volterra integral differential equations arise in many areas of mathematical 

modelling: for example, population dynamics (taking into account the gestation 

times), infectious diseases (accounting for the incubation periods), physiological and 

pharmaceutical kinetics (modelling, for example, the body's reaction to CO2, etc. in 

circulating blood) and chemical kinetics (such as mixing reactants), the navigational 

control of ships and aircraft (with respectively large and short lags), and more general 

control problems [1]. The analysis to the Volterra integral equations with delays dates 

back to the works in [2] and [3]. Some more recent results on this subject can be 

found in [4] and [5].They must be solved successfully with efficient numerical 

approaches. 

The numerical solutions of integral  equations with delays have also been 

discussed by several authors such as [6] and [7].Block-Pulse functions (BPFs)  have 

been used by many authors and applied for solving various problems, for example see 

Steffens [8] and [9].  

The main objective of the current study is to implement the BPFs has been used to 

solve Volterra integral equations with constant time delay of the form  
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𝑔(𝑥) = 𝑓(𝑥) + ∫𝑘(𝑥, 𝑦)𝑓(𝑦 − 𝜏)𝑑𝑦                            ……… (1.1)

𝑥

0

 

The layout of this paper is as follows: In the next section, we discuss BPFs, their  

properties and function approximation by them. In Section 3, we give the description 

and development of the method for solving Volterra integral equations with time 

delay. Error estimation and rate of  convergence of the method is discussed in Section 

4. In Section 5 for showing the efficiency of this method, numerical example is 

presented. Finally, in Section 6 is devoted to the conclusion of this paper.  

2- Review of Block Pulse Functions  

The purpose of this section is to interpose definition and properties of BPFs. 

Function approximation using BPFs and operational matrix associated with BPFs 

have been discussed briefly. 

 

2.1 Definition of BPFs and their properties  

An  M-set of Block-Pulse function is defined over the interval [0, T) as interval      

[0, T) is defined as with a positive integer value for k. In this paper, it is assumed that 

T = 1, so BPFs are defined over [0,1). 

𝑏𝑖
𝑚(𝑥) = {

1 (𝑖 − 1)ℎ ≤ 𝑥 < 𝑖ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       ……… . (2.1) 

 where, 𝑖 = 1,… ,𝑚 i with 𝑚 as a positive integer, ℎ =
𝑇

𝑚
=

1

𝑚
  also, 𝑏𝑖  is called the 

𝑖𝑡ℎ BPF. 

There are some main properties for BPFs, the most important of these properties 

disjointness, orthogonality  and completeness that  can be expressed as follows [10] 

and [11]: 

 

 Disjointness. The BPFs are disjoint with each other, i.e.,  

𝑏𝑖
𝑚(𝑥)𝑏𝑗

𝑚(𝑥) = {
𝛿𝑖𝑗 𝑏𝑖

𝑚(𝑥) 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
       ……… . (2.2) 

where    𝑖, 𝑗 = 1,… ,𝑚  and 𝛿𝑖𝑗 is Kronecker delta. 

Orthogonality. The BPFs are orthogonal with each other, i.e., it is clear that 

∫ 𝑏𝑖
𝑚(𝑥)𝑏𝑗

𝑚(𝑥) 𝑑𝑥
1

0

= ℎ 𝛿𝑖𝑗  , i; j =  1, … ,m      ……… . (2.3) 

Completeness. For every 𝑓 ∈ ℒ2([0,1)) approaches to the infinity, Parseval’s 

identity holds, that is  
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∫ 𝑓2(𝑥) 𝑑𝑥
1

0

=∑𝑓𝑖
2‖𝑏𝑖

𝑚(𝑥)‖2
∞

𝑖=1

  ,        ……… . (2.4) 

where  𝑓𝑖 =
1

ℎ
∫ 𝑓(𝑥) 𝑏𝑖

𝑚(𝑥) 𝑑𝑥  …… . . (2.5)
1

0
 

 

2.2  Vector Form  and BPFs Expansion  

The set of BPFs is written as 

𝐵(𝑥) =  (𝑏1(𝑥), 𝑏2(𝑥),… , 𝑏𝑚(𝑥))
𝑇 . 

 

Also, 𝐹 is a m-vector given by 

𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑚)
𝑇 

 

where 𝑓𝑖 is the block pulse coefficient with respect to the ith  BPF 𝑏𝑖
𝑚(𝑥). 

A function  𝑓(𝑥) ∈ ℒ2([0,1))  may be expanded by the  block pulse series as [6] : 

𝑓(𝑥) ≃∑𝑓𝑖𝑏𝑖
𝑚(𝑥) = 𝐹𝑇

𝑚

𝑖=1

𝐵(𝑥) = 𝐵𝑇(𝑥)𝐹  .      ……… . (2.6) 

Now assume that  𝑘(𝑦, 𝑥)be arbitrary ℒ2 function of two variables on         

[0,1) × [0,1). It can be expanded as: 

𝑘(𝑦, 𝑥) = 𝛽𝑇(𝑦)𝐾𝐵(𝑥) = 𝐵𝑇(𝑥)𝐾𝑇𝛽(𝑦)………(2.7) 

where 𝛽 & 𝐵(𝑥)   are 𝑚1& 𝑚2 dimensional BPFs vectors respectively, and 𝐾 is 

the  𝑚1 × 𝑚2 block pulse coefficient matrix with  

 𝑘𝑖𝑗  , 𝑖 = 1,2, … ,𝑚1, 𝑗 = 1,2, … ,𝑚2  as follows: 

𝑘𝑖𝑗 = 𝑚1 𝑚2  ∫∫ 𝑘(𝑦, 𝑥)
1

0

1

0

 𝛽𝑖
(𝑚1)(𝑦)𝐵𝑖

(𝑚2)(𝑥) 𝑑𝑥 𝑑𝑦. 

In this paper for convenience, we put   𝑚1 = 𝑚2 = 𝑚. 

 

2.3 Operational matrix of integration 

  

The integral ∫  𝑏𝑖
𝑚(𝑦) 𝑑𝑦  

𝑥

0
 is follows  

∫  𝑏𝑖
𝑚(𝑦) 𝑑𝑦  

𝑥

0

= {
0 0 ≤ 𝑥 < (𝑖 − 1)ℎ,

𝑥 − (𝑖 − 1)ℎ (𝑖 − 1)ℎ ≤ 𝑥 < 𝑖ℎ,
ℎ 𝑖ℎ ≤ 𝑥 < 1.

       ……… . (2.8) 

As represented in [11]: 
 

∫  𝐵(𝑦) 𝑑𝑦 ≃ Υ 
𝑥

0

𝐵(𝑥)  ……… (𝟐. 𝟗) 
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where Υ is called operational matrix of integration which can  represented by 

Υ =
ℎ

2
 

(

 
 

122…2
012…2
001…2
⋮ ⋮  ⋮ ⋱  ⋮
000…1)

 
 
 .     ……… (2.10) 

So, the integral of every function 𝑓(𝑥) can be approximated as follows: 

∫  𝑓(𝑦) 𝑑𝑦 ≃ 𝐹𝑇Υ 
𝑥

0

𝐵(𝑥)  ……… (2.11) 

 

For approximate a function with  time delay, we consider a block pulse function 

containing time delay 𝜏 = (𝑝 + 𝜆)ℎ with a nonnegative integer p and 0 ≤ 𝜆 < 1 that 

can be expressed as a vector form: 

 

𝑏𝑖
(𝑚)(𝑥 − 𝜏) = ∆𝑖

𝑇𝐻𝑝 𝐵(𝑥) − ∆𝑖
𝑇𝐻𝑝𝐵𝜆(𝑥) + ∆𝑖

𝑇𝐻𝑝+1𝐵𝜆(𝑥),     ……… (2.12) 

 

to avoid the expression 𝐵𝜆(𝑥) in the above equation, we expand the function  

𝑏𝑖
(𝑚)(𝑥 − 𝜏) into its block pulse series : 

𝑏𝑖
(𝑚)(𝑥 − 𝜏) = (𝒸𝑖1, 𝒸𝑖2, … , 𝒸𝑖𝑚)𝐵(𝑥), 

where 𝒸𝑖𝑗   , 𝑖, 𝑗 = 1,2, … . ,𝑚     are block pulse coefficients given by 

𝒸𝑖𝑗 = ∆𝑖
𝑇((1 − 𝜆)𝐻𝑝 + 𝜆 𝐻𝑝+1)∆𝑗    .   ……… (2.13) 

Therefore, the block pulse series in a vector form : 

𝐵(𝑥 − 𝜏) = ((1 − 𝜆)𝐻𝑝 + 𝜆 𝐻𝑝+1) 𝐵(𝑥)  ………(2.14) 

the matrix (1 − 𝜆)𝐻𝑝 + 𝜆 𝐻𝑝+1 is  called the block pulse operational matrix for time 

delay as: 

(1 − 𝜆)𝐻𝑝 + 𝜆 𝐻𝑝+1 =

(

 
 
 
 
 

0…0 1 − 𝜆       𝜆      0⋯   0
0⋯  0       0   1 − 𝜆    𝜆 ⋯0
⋮  ⋯   ⋮   ⋮   ⋮       ⋮       ⋱         ⋮
0⋯0  0  0       0    ⋯         𝜆
0⋯0  0  0       0  ⋯  1 −  𝜆
0⋯0  0  0       0    ⋯         0
⋮  ⋯   ⋮   ⋮   ⋮       ⋮       ⋱         ⋮
0⋯0  0  0       0    ⋯         0)

 
 
 
 
 

   𝑚×𝑚        ……… (2.15)  

 

Thus,  the block pulse series of a function containing time delay 𝜏 can be expressed 

as follows: 

𝑓(𝑥 − 𝜏) ≃ 𝐹𝑇𝐵(𝑥 − 𝜏) = 𝐹𝑇((1 − 𝜆)𝐻𝑝 + 𝜆 𝐻𝑝+1) 𝐵(𝑥)  ………(2.16) 
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3. Application of the Method 

In this section, we applied the BPFs method to solve (1.1). 

Now, we approximate 𝑔(𝑥), 𝑓(𝑥), 𝑘(𝑥, 𝑦)  with respect to BPFs  as follows :  
 

𝑔(𝑥) ≃ 𝐺𝑇𝐵(𝑥) = 𝐵𝑇(𝑥)𝐺, 

𝑓(𝑥) ≃ 𝐹𝑇𝐵(𝑥) = 𝐵𝑇(𝑥)𝐹, 

𝑘(𝑥, 𝑦) ≃ 𝐵𝑇(𝑥)𝐾𝛽(𝑦) = 𝛽𝑇(𝑦)𝐾𝑇𝐵(𝑥), 

we approximate 𝑔(𝑦 − 𝜏) by relation (2.16) as follows, 

𝑔(𝑦 − 𝜏) ≃ 𝐺𝑇𝛽(𝑦 − 𝜏) ≃ 𝐺𝑇((1 − 𝜆)𝐻𝑝 + 𝜆 𝐻𝑝+1) 𝛽(𝑦),   

and putting, 𝑁 = (1 − 𝜆)𝐻𝑝 + 𝜆 𝐻𝑝+1, we obtain,  𝑔(𝑦 − 𝜏) ≃ 𝐺𝑇𝑁𝛽(𝑦). 
and substituting above approximation in equation (1.1), we have  

𝐺𝑇𝐵(𝑥) ≃ 𝐹𝑇𝐵(𝑥) + ∫𝐺𝑇𝑁𝛽(𝑦)𝛽𝑇(𝑦)𝐾𝑇𝐵(𝑥)𝑑𝑦   

𝑥

0

  

≃ 𝐹𝑇𝐵(𝑥) + 𝐺𝑇𝑁(∫𝛽(𝑦)𝛽𝑇(𝑦)𝑑𝑦   

𝑥

0

)𝐾𝑇𝐵(𝑥)   ………(3.1) 

Now, assume that 𝐾𝑖 be the ith row of the constant matrix 𝐾𝑇 , 𝑉𝑖   be the ith row 

of the  matrix Υ, and 𝐷𝐾𝑖be a diagonal matrix with 𝐾𝑖 as its diagonal entries, we will 

have, 

(∫𝛽(𝑦)𝛽𝑇(𝑦)𝑑𝑦   

𝑥

0

)𝐾𝑇𝐵(𝑥) = (∫𝐵(𝑥)𝐵𝑇(𝑥)𝑑𝑥   

𝑥

0

)𝐾𝑇𝐵(𝑥) 

 

= (

𝑉1 𝐵(𝑥)             0         ⋯ 0

0       𝑉2 𝐵(𝑥)   ⋯ 0
⋮               ⋮         ⋱   ⋮

              0                    0      ⋯        𝑉𝑚 𝐵(𝑥)

)(

𝐾1
𝐾2
⋮
𝐾𝑚

)𝐵(𝑥) 

 

= (

𝑉1 𝐵(𝑥) 𝐾1 𝐵(𝑥)

𝑉2 𝐵(𝑥) 𝐾2 𝐵(𝑥)
⋮

𝑉𝑚 𝐵(𝑥) 𝐾𝑚 𝐵(𝑥)

) = (

𝑉1 𝐵(𝑥)𝐵
𝑇(𝑥)𝐾1

𝑇 

𝑉2 𝐵(𝑥)𝐵
𝑇(𝑥)𝐾2

𝑇

⋮
𝑉𝑚 𝐵(𝑥)𝐵

𝑇(𝑥)𝐾𝑚
𝑇

) 

 

=

(

 

𝑉1𝐷𝐾1
𝑉2𝐷𝐾2
⋮

𝑉𝑚𝐷𝐾𝑚)

 𝐵(𝑥) = 𝑅𝐵(𝑥), …… . . (3.2) 

where 

𝑅 =
ℎ

2
(

𝑘11  2𝑘21  ⋯  2𝑘𝑚1
  0     𝑘22   ⋯   2𝑘𝑚2
⋮        ⋮      ⋱        ⋮

    0        0   ⋯   2𝑘𝑚1

)

𝑚×𝑚

. ……… (3.3) 
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substituting relation (3.2) in (3.1), we get 

 

𝐺𝑇𝐵(𝑥) ≃ 𝐹𝑇𝐵(𝑥) + 𝐺𝑇𝐵(𝑥)𝑁𝑅 𝐵(𝑥), 
hence, 

 

𝐺𝑇(𝐼 − 𝑁𝑅) ≃ 𝐹𝑇  . ……… (3.4) 

 

We put  𝐶 = 𝐼 − 𝑁𝑅 and replacing  ≃ with = yields, 

 

𝐶𝑇𝐺 − 𝐹  . ……… (3.5) 
Therefore, the equation (3.5) that gives the approximate block pulse coefficient 

of the unknown function 𝑔(𝑥).  

 

4.  The Rate of Convergence 

In this section, we obtain an error estimate for the numerical method in previous 

section.  

Theorem 1. [7] Suppose that 𝑓(𝑥) is an arbitrary real bounded function, which is 

square integrable in the interval [0, 1), and 𝑒(𝑥) = 𝑓(𝑥) − 𝑓𝑚(𝑥) , 𝑥 ∈ 𝐼 = [0,1),  

which  𝑓𝑚(𝑥) = ∑ 𝑓𝑖𝐵𝑖
(𝑚)𝑚

𝑖=1 (𝑥)is  block pulse  series of  𝑓(𝑥). Then,  

                         ‖𝑒(𝑥)‖ ≤
ℎ

2√3
 sup
𝑥∈𝐼
|𝑓′(𝑥)|.       …… … (4.1) 

 

Theorem 2. [ 7 ] Suppose that 𝑓(𝑦, 𝑥) ∈ ℒ2([0,1) × [0,1))  and 𝑒(𝑦, 𝑥) =

𝑓(𝑦, 𝑥) − 𝑓𝑚(𝑦, 𝑥)   , (𝑦, 𝑥) ∈ 𝐷 = ([0,1) × [0,1)) ,  which is 𝑓𝑚(𝑦, 𝑥) =

∑ ∑ 𝑓𝑖𝑗  𝛽𝑖
(𝑚)(𝑦)  𝐵𝑗

(𝑚)𝑚
𝑗=1 (𝑥)𝑚

𝑖=1  is  block pulse  series of  𝑓(𝑦, 𝑥). Then, 

 

‖𝑒(𝑦, 𝑥)‖ ≤
ℎ

2√3
 √ sup
(𝑠,𝑡)∈𝐷

|𝑓𝑦′(𝑠, 𝑡)|
2
+ sup
(𝑠,𝑡)∈𝐷

|𝑓𝑥′(𝑠, 𝑡)|2 .       …… … (4.2) 

 

From Theorem 1 and Theorem 2 we have, ‖𝑒(𝑥)‖ = 𝑂(ℎ) 𝑎𝑛𝑑 ‖𝑒(𝑦, 𝑥)‖  = 𝑂(ℎ) 

and because of it we can obtain good degree of accuracy. 

5. Numerical Implementation 

In this section, to achieve the validity, the accuracy and support our theoretical 

discussion of the proposed method, we give some computational results. The 

computations, associated with the example, are performed by MATLAB 7. Let 𝐺𝑖  

denote the Block pulse coefficient of exact solution of the given example, and let 𝑔𝑖  

be the Block pulse coefficient of computed solutions by the presented  method.  

The error is defined as 
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‖𝑒‖∞ = max
1≤𝑖≤𝑚

|𝐺𝑖 − 𝑔𝑖| 

 

Illustrative example:  Consider the following Volterra integral equation with 

(constant) time Delay  𝜏 > 0, 

 

𝑔(𝑥) = 𝑥2 (1 − 𝜏
2

2⁄ ) + (
𝑥3
3⁄ )  𝜏 −

𝑥4
4⁄  + ∫𝑦 𝑔(𝑦 − 𝜏)𝑑𝑦  

𝑥

0

 

The exact solutions are  𝑔(𝑥) = 𝑥2   𝑓𝑜𝑟  0 ≤ 𝑥 ≤ 1  .The numerical results 

obtained with BPFs are presented in Tables 1-2 and Figures 1-4.  

 

Table 1: Numerical  results. 

 

X Exact Solutions (𝐺𝑖) 
computed Solutions (𝑔𝑖) 

m=32 m=64 

0.0 0.0000 0.0005 0.0001 

0.1 0.0100 0.0129 0.0108 

0.2 0.0400 0.0422 0.0391 

0.3 0.0900 0.0896 0.0914 

0.4 0.1600 0.1511 0.1577 

0.5 0.2500 0.2650 0.2588 

0.6 0.3600 0.3705 0.3634 

0.7 0.4900 0.4955 0.4807 

0.8 0.6400 0.6368 0.6493 

0.9 0.8100 0.7912 0.8061 
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Figure 1. Plots of the exact solution against the computed solution when m = 32. 

 

 

 
Figure 2. Plots of the exact solution against the computed solution when m = 64  
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Table 2: Maximum absolute errors  
 

𝜏 ‖E‖∞ 

m=32 m=64 

0.01 2.8372810955E-7 1. 6419315611E-8 

0.03 4.9337091632E-7 7.2100876314E-8 

0.05 1.7135916728E-5 2.0641244876E-5 

0.07 1.1827364911E-5 1.4937610927E-5 

0.09 1.0371194285E-5 2.9103752773E-6 

0.11 2.4218503252E-6 3.3307113458E-6 

0.13 2.1006914883E-6 6.3179003419E-6 

0.15 2.0472915782E-6 3.0014720815E-7 

0.17 1.8729519054E-6 2.8260915427E-7 

0.19 1.4178209331E-6 1.5151730168E-7 

 
 
                     

 

 
 

Figure 3. Plots of the absolute error functions ‖𝐄‖∞  when m = 32 
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Figure 4. Plots of the absolute error functions ‖𝐄‖∞  when m = 64 

 

 

6. Conclusion  
 

This method is more efficient and more accurate than some other methods for 

solving this class of integral equations. On the other hand, the benefit of this method 

is low cost of computing operations. The applied method transforms the singular 

integral equation into triangular linear algebraic system that can be solved easily. 
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 الخلاصة

في الحل العددي لمعادلات فولتيرا التكاملية مع التأخير.  طريقة الضغط النبضيل الهدف من هذا العمل في اتباع نهج يتمث
. تم عمل تحليل للخطأ وتم MATLABبلغة  حصول على حل رقمي. علاوة على ذلك، تتم كتابة البرنامجتستخدم هذه الطريقة لل

 توضيح التطبيقات من خلال المثال التوضيحي.

 


