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Abstract

Iterated function space is a method to construct fractals and the results are self-similar. In this paper, we introduce
the Hutchinson Barnsley operator (shortly, (H — B) operator) on a G — metric space and employ its theory to construct
a fractal set as its unique fixed point by using Ciric type generalized F-contraction in complete G — metric space. In
addition, some concepts are illustrated by numerical examples.
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1. Introduction

In mathematics there are many different definitions of fractal and have many known features, such as self-
similarity and fractional dimension and self — similarty of iterated function system (IFS).

IFS have captivated simple spaces like square or interval [1-3]. In fact iterated function space was a method to
construct fractals and the results are self-similar . Set theory are close to IFS more than fractal geometry [1].Fractals of
IFS can be number of dimensions but are generally commuted and draw in 2D. The fractal is made by combination of
several copies of itself , each copy transfer by a function for example canonical example for Sierpinski triangle. In case
of make shapes smaller and making points close together by functions are normally contractive .

The features of (IFS) fractal was obtained by overlapping smaller copies of itself, each copy was also created by
itself infinity. The process of studying fractal is an excellent science which explain possibilities in any number of
application areas and in pure mathematics itself that was evolved by John Hutchinson [3] and Michael Bransley [4] and
others. The iterated function system denotes theoretical straucture to follow the mathematics of many classical fractals.
The attractor known as the output of an iterated function system which yeild different of fractals. The general theory of
dynamical systems was embedded and appealing by mathematics of iterated function, fractals includes classical Cantor
set Koch snowflake and Seirpinski gasket which generated as attraction of (IFS). Hutchinson [3] and Bransley find
away to define and creat fractals as compact invariant subset of complete metric spaces with relativeto the combination
of contraction Hutchinson Bransely operator (HB) known as the operator on hyoerspace of nonempty compact sets to
define a fractal set as fixed point by using the theorem of Bransley in the metric spaces. By using Hutchinson Bransley
test the fixed point theorem fractals [5] .Also (HB) theory developed by S.L.Singh et al. for asystem of single valued
and multivalued contractions of metric spaces [6]. To prove fixed point theorem introduced K Iterated Function System
using Kannan mapping in a complete metric space. Finally Easwaramoorthy et al. has investigated and generalize by
(IFS) of ambiguous contractions in the fuzzy metric space [4].

In this paper, we introduce F- iterated function system and employ the Hutchinson -Barnsley theory to construct a
fractal set as its unique fixed point by using Ciric” type generalized F-contractions in a complete G— metric space.

"Let M be a nonempty setand Y: M'x M X M — R* be a function satisfying the following condition :

1- Y(qu,v) = Oifandonlyif g =u=v,
2- 0<Y(q,qu), VYqu €Mwithq #u,
3- Y(q,quw) <Y(quv) forall qu,v €M withu # v,

Journal of University of Babylon for Pure and Applied Sciences (JUBPAS) by University of Babylon is licened under a Creative
Commons Attribution 4.0 International License. 2019.

329



Journal of University of Babylon for Pure and Applied Sciences,Vol.(27), No.(2): 2019

4- Y(q,u,v) =Y(q,v,u) = ..., (symmetry in all three vairables),
5- Y(q,u,v) <Y(q,a,a) +Y(a,u,v) forall qu,v,a € M.

Then the function Y is called a generalized metric on M [7] and the pair (M,Y) is said a G-metric space.”" "AG -
metric space M is said a symmetric [8] if Vr,u € M

Y(quu)=7Y(qu)
Many results and examples about G-metric space and its generalization one can find in [9-15].

Proposition 1.1[16]: Let (M, Y") be a G-metric space , then the following are equivalent :
1-(M,Y ) is symmetric.
2-Y (qu,u) <Y(q,u,a)forall qu,a € M,
3-Y (qu,v) <Y(qua)+Yw,ub) foral qu,v,ab

The Y-ball with center g, and radius € > 0 is By(qq,€) [7] is

By(qo.€) ={s€ M :Y(qo.5:8) <€}.

The sequence {g,,} in a G — metric space (M, Y) issaid to [7]
1-Y —convergenttorif3k € N,e > 0 forallm,n = k such that Y (q,q,, ) < €.
2-Y -Cauchy if 3k € N,e >0 forallm,n,l = k such that Y(q,,qm,q;) <€.
A G—metric space (M, Y) is complete if every Y -Cauchy sequence ( M, Y) is Y- convergent in (M, Y).

Proposition 1.2 [17]: Let (M, Y) be a G-metric space the following statements are equivalent
1-{q,, } is Y-convergent to q ,if and only if Y (q,,qn,q) = 0, as n —> oo,
2-i5 Y(qnq,9)> 0 as n - oo ifand onlyif Y(q, Gmq)— 0, as m,n — .

Proposition 1.3 :Let {g,} and {u,} be two sequences in a G —metric space (M,Y) if {g, } converges to q and {u,}
converges to u then Y(q,, qn, uy) converges to Y(q, q, u).

The self- mapping f on a G-metric space (M,Y)isY - continuous at ¢ € M

[18] if and only if every sequence

Y
{an}n=1 c M , with q,.q, we have fo - f;"

A mapping f: M — M be is said F-contraction if there exists >0 suchthatVvV q,u,v € M,
Y(fq,fu,fv) >0,
1+ F(Y(fq,fu,fv)) <F(Y(quv)), VquveM (1)
Let D be the class of all functions F: Rt — R is a mapping satisfying the following conditions:
(D1) F is strictly increasing,
ie. forallg,u,v € R* suchthatq <u <v ,F (q) < F(u) < F(v),
(D2) For each sequence {a, } o=, of positive numbers,nl_i)gl o, =0 I}Lrg F(ay) =-w.
(D3) There exist k € [0,1) 3 al_i)%:_ akF(a,) =0.

Every F-contraction is cconstructive (from D1) and then every F —contraction is Y-continuous.

Remark 1.1 Clearly, (1.1) and (D1) implies that every F-contraction mapping is Y-continuous, since V q,u,v € M
with fq # fu # fv,
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F(fq. fu fv) < FY(q,u,v)).

Definition 1.1: A mapping f on a G- metric space (M,Y) is said a Ciric type generalized F-contraction on (MY if 3
t>0suchthatforall q,u,v € M,

[Y(fq, fu, fv) >0 =t + F(Y(fq, fu, fv)) < F(M(q,u,v))] .. (1.2)
where M(q,u,v) = max{Y(q,u,v),Y(q,fq,fq),Y(u, fu, fu),

YO, fo, fv),(Y(q' fu, fv) + Y(u, ,;q, ) + Y, fq, fu)) .

Theorem 1.1: Let (M,Y) be a complete G- metric space and f: M — M be a Ciric” type generalized F-contraction. If
f or F is Y-continuous then f has a unique fixed point in M.

Proof:
Let g, € M, define a sequence {q,} in M by q,,= fq,_, forn € {1,2,---}.
If gny+1 = qn, for some ny€{0,1,---}, then fq,, = qy,, and so, f has a fixed point.
Now let g, , # g, foreveryn € {0,1,--}and
let
Yo=Y (Gns1, o qn), forn €{0,1,-}.
Theny, >0 forall n € {0,1,--}.
Now using (1.2),we have
F (ya) = F(Y (@n+1: 4n Gn))
=F({Y (fqnfan-1,fn-1))
<F(Y(qn Gn-1,9n-1)) - T
= F(max{Y(qn, Gn-1,Gn-1), Y (@n Gn+1, dns)D — T
= F(max{yn_1, yn, ya) — T - (1.3)
Ifyn > yn1
for some n € {1,2,---}, then from (1.3) we get
F(yn) 2 F(yn-1) — T,
which is a contradiction, since t> 0. Thus y, < y,_, foralln € {1,2,--:}
So, from (1.3) we have
F(yp) < F(yn_1) — T Therefore we obtain
Fy) <Flyn-1)— 1,
< F(yp_p) — 2T,

< F(yy) —nt (1.9

From (1.4), we get lim F(y,,) = — o. Thus, from (D2), we have lim (y,) = 0.
n—oco n-—-oo
From (D3) 3 k € (0,1) such that lim y*F(y,) = 0.
n—oo
By (1.4), the following holds for all n € {1,2,---}

Y F ()= Y F(yo) <~ yK nt<0. ..(1.5)

Letting n — oo in (1.5) we obtain that
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7lirrgonyn:O. ... (1.6)

From (1.6), there exits n; € {1,2,--} such that ny¥ <1 forall n = n,.

So, we have, for all n = n,
Yo <. (1)
To show that {q,,} is a Y-Cauchy sequence consider, n€ N 3m > n >n,.
From the definition of G — metric and (1.7), we have
Y (@, G Gm) < F (G Gnar s Gne1) *F (@nass Gz Gnaz) + 4 F (@ne1, Gno Gm) = Yot Ynga +o0F Ymea
=Xy
<XZnYi
< Z?in%/k
By the convergence of the series Zf‘;ni%/k , if limit n—o0, we get F (¢, Gm» @m) — O.

Thus {q,} is a Y-Cauchy sequence in (M,Y). Since M is a complete G-metric space, the sequence {q,} Y-converges
to a point z € M, that is, ginl;lo‘rn =z
First case, if fisY-continuous, thenz = limq,4; = limfq, = flimq,=fz
n—oo n—oo n—oo
and so, z is a fixed point of f.
Second case, if F is Y-continuous we claim that z = fz. Assume the contrary, that is,
z * fz.
Then 3 ng € N and a subsequence {qy, } of {q,}> for all n, >ny, Y(fqn,.fz fz) >0

(Otherwise, there exists n; € N such that g, = fzfor allm > ny, which implies that g, = fzit is a contradiction,
since z # fz).

Since
Y (fqn,.fz,fz) >0, forall n, >n,,
then from (1.2),we have
T+ F(Y(fany,, f2.f2)) = T + FV(fqn,.f2 f2)) <F(Y(M(qn,.z 2))

1
< Fmax{Y (Gny 2, 2), Y ng Qi Qi) Y 2 f2f2), 5 [V (@ 2, £2) + Y (F2, 2, 2) + V(2 G0 G ]D)-

Taking the limit k — oo and by continuity of F we have
T+ F(Y(zfzfz) < Y(zfzfz)),
which is a contradiction. Therefore, z = fz.
Finally, to prove uniqueness, let g,u € M and q # u be any two fixed point of f, then from (1.2) we have
T+ FXY(fq fu fu) < F(M(Y(q,u, u))),
we obtain
T+ F(Y(quu) <F(Y(q,uu)), whichiscontradiction.

Example 1.1: Let F, : (0,0) — R be given by the formula F, (@) = a + Ina. Itis obvious that F, € D. Then each
self mappings f on a G-metric space (M ,Y) satisfying (1.1) is an F,-contraction such that

YUQIWI) (¥ (fa.fufo)-Y@uv) < =T, (1.8)
Y(quv)

forall gu,v e M, fq# fu# fv
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From the above example we conclude that every F -contraction f is a contractive mappings, vV q,u,v € M, fq #

fu#+fv.

Example 1.2 Let M:{% :neN}U{0}andY(q,uw,v) = |q —u|+ |lu—v|+ |v —q, then

(M,Y) is complete G-metric space. Define a mapping f : M — M,

1 1
f@={m+n? 17w
0 ,q=20

First, if F, defined by F; (@)=Ina . Then f is not generlized F;_ contraction that is mean f is not generalized
contraction of Ciric type.

We have
Y(fq.fufv)
SUPquveM qrurv ﬁ =1
On the other hand, taking F, with
{ Ina 0 <q<e?
— , a<e
a
Fy(a) = ! Va
a—e?+— ,a > e?

In this case we find the condition (D), (D,) and (D5) satisfied for (k = g) and note that F is Y- continuous.
To show f is generalized F, —contraction with t = In 2, consider

supquvenY (fq, fu, fv) =1 < e2.

f is generalized F, —contraction with T = In 2. If and only if , for all q,u, v € M

[Y(fq, fu, fv) > 0= In2 + F, (Y (fq, fu, fv)) < (M(q,u,v))] ..(1.9)
To see (1.8), it is sufficient to see that (by (F; ))
vq,u,veEM
¥ (fq, fu, fv) > 0 = In 2 + F, (Y (fq, fu, fv)) < F, (M(q,u,v))]. ...(1.10)

< Forallqu,veM

[ (Fa, fu fv) > 0 = [ Y(Fq, fu, Fo) T ¥ (g, u,v) 7w < 11

o Forallqu,veM, [Ifg— ful +Ifu—fvl+Ifq—fvl >0
1 1
= [(Ifq — ful + fu~ fol + |fq — fol WITsRT=FTTaTA(|q - ul + lu = v] + |q — v]) TEwm-vro-a

_1
<3l

Now, if g =%andu=v=# with u, v > g, then

1 1

(1fq = ful + Ifu = fol + Ifq — fol)(VaTIIRTTaTAC|q = ul + [u = v] + g = v]) T

1

1 1 ) 1 ES. 1y
_[( 1 1 )+( 1 . 1 ) ( 1 1 )] [‘(n+1)2 m+1)2" (m+1)2 (m+1)2 (m+1)2 (”+1)2][(L_L)
(n+1)2 (m+1)? (m+1)2 (m+1)? (m+1)2 (n+1)2
1

n? m?2

(Z-2) + (& - 2) GGk

m2  m? m?  n?
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2_.2
Since (%) =0, then

[m+1)2-(n+1)2][(m+1)2-(n+1)?] [(m2-n2)(m2-n2)]
_r/m+1)2-(n+1)? (m+1)%-(n+1)? J[(m+1)2—(n+1)2]+[(m+1)2—(n+1)2] m?-n’m+n+2 m2-n?m+n+2\, [[(m2-n2)+(m2-n2)]
=[C (n+1)2(m+1)? )+ ( (n+1)2(m+1)? ] [( ) ( )]

n?m2m+n+2 n?m2m+n+2

[(m+1)2—(n+1)?][(m+1)*—(n+1)?]
NI+ D=+ D7+ [Gm+ D7 ~(n+ D7)

(m+1)2%2-mn+1)>? (m+1)?—(n+1)>?
(T 0?2 T Tt D7 122

((m +1)2-(n+1)2m+n)(m+ 1) n+ 1)2>

i > 2,2
O T S + mym + 2 + 1)2)1 J

(n+ 1)%2(m+ 1)%2(m + n + 2)m?n?

[(m2—n2)(m2—n?)]
[(m2-n2)+(m2-n?)]

[(m+1)2=(n+1)?][(m+1)*—(n+1)?]

2 _ 2 2 _ 2
m+1D*-(+1) (m+1)*—-(n+1) VI D= D+ [n+ =+ 7]

=T e T om0 mr D2

[(m?-n?)(m?-n?)]

] VI —n?)+m?-n?)]

(m +n + 2)m?n? (m +n+ 2)m?n?
a2 m+ 02 T m+mm+ D2m + D2

On the other hand, since
m+1)2%2—-(n+1)>2 m+12—-(n+1)> 1
(n+1)? (m+1)? m+1)? (n+1)2 "2’
[((m+ 12—+ D[m+1)?—(n+1)2?]
JIm+1D2 -+ 1D+ [(m+ 12— (n+ 1)
[(m? —n*)(m* —n?)]

JIm2 = n2) + (m2 —n?)]

and

(m+n+ 2)m?n? (m +n+ 2)m?n?

(m+n)(n+1)2(m+ 1)2) * (m+n)(n+1)2(m+ 1)2 <1

(

Then we get

1 1
[C1fa = ful + Ifu = fvl + |fq = fol WIa-FulH=rosia=ii( g — u| + [u = v] + |q — vl) Via-ulu-vitia=ul
1
<-=]
< 2]
Therefore, (1.10) is satisfied

Ifqzéandu=v=0,then

1 1
[(1fg = ful + 1 fu— fol + |fq = fol)TaTRVTITToI( g — ul + Ju = v] + |q - v]) V=TTl =]

1 1
1 1
— ’# (n+1)? i \/;
(n+ 1)? n
n2n n2m+n 4

T (n+1)2+D) = (n+1)2m+D) 2

=(2)2m+D) iz <1

n+1 n 2
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Then (1.9) is holds .thus all condition of theorem (1.6) are satisfied.

So, f has unique fixed point in M.

2- HB -Operator under Ciric type generalized F —contraction mappings

Definition 2.1:[19] A G — iterative function system (shortlyy, G —1IFS) on a G —metric
space M is a finite family of contractions f,: M - M with contractivity factor a,,,

n=1,2,..N.Itisdenoted by {M;f,,n=1,23..... N}.

Definition 2.2:[19] The general Hutchinson- Barnsley operator (shortly, HB operator) of the IFS is a function
F: 200 200 defined by

F(S) = UN_, £,(S) ,forall S € 200,
Definition 2.3 [19]: The fixed point A € 2 of the Hutchinson — Barnsley operator

N
r=J _f@

is called the attractor (Fractal) of the iterated function system.

Theorem 2.1: Let (M, Y) be a G-metric space and f;: M - M i = {1,2,..k} where k are contraction mapping with
continues Ly, Ly, .... L. Then Hutchinson — Barnsley operator F on K (M)

satisfies a contractive condition, with respect to I' and contractive constant L = max L;
i=1,...

ie r(FQ),F(),F) < LY (q,u,v)) Vq,uv €K(M)
In particular, if f;,i = 1,2, ... k are contraction mapping on M.
Then F given by (2.1), is contraction mapping of K (M) with respect to the I".

Proposition 2.1: Let (M, Y) be a G-metric space and {f,, : n = 1,2,3, ..., N} be a sequence of a Ciric type generalized
F-contraction on M with 7 > 0 for each £, then F: 20D — 230 defined by

F (S) = F,(S)UF, (S)U ... ... U E(S)=UN_, E, (S), forall § €200,
is a Ciric type generalized F-contraction (C — F- contraction) on (290, I")
Proof: Let us prove that by mathematical induction and using the properties of G-metric
For N = 1 the statement is obviously true now let N=2 that is
[Y(fq. fu, fv)>0 =7+ F(Y[(fy U £2)(), (f U ) (W), (f1 U )(W)])
<F(M(q,u,v),(v,uq), - (2.1)
where
M(q,u,v) = max{Y(q,u,v),Y(q, f1(@), f1(@)), Y (w, (W), fy(w)),
Y@, AW), A Y (a0 (@, (@), Y(u LW, W),

(y(q'fl(u)'fl(v)) + Y(urf1(CI),f1(U)) + Y(V,ﬁ(Q)rfl(u)))
3

(Y(@. £, L) + Y(u £(), @) + Y (v, £2(0), L(W))) }
. .

Then 2t + F{[(Y(q,f1 @ fi (Q))' ]f(u, @), fi (u))r Y(V' i), fi (U))],
[(Y(q' fZ (q)' fZ (Q))' Y(u' fZ (u)' f2 (u))’ Y(U, fZ (17), fZ (U))]} < F(M (q' u, 17), (U, u, q))

FY((q.q.f@) +Ywu fu) +Y(,v, fv) <FM(quv),(v,u,ql} -2
Similarly, that is true for any natural number N.

Y(Urfz (U)’fz(v)),
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Theorem 2.2: Let (M,Y) be complete G-metric space, and {M; f, : n=1,2,3,...,N} a generalized F —contractive
iteration function system. Then the following hold:

(i) A mapping T: K(M)— K (M), where

T(C) = UN_, f, (C) forall C € K(M)
is Ciric type generalized F-contraction on a complete G-metric (K(M),Y).
(ii) T has a unique fixed point (also called an attractor or fractal).
Ue 2D, U =TW) = UN_, £, ().

(iii) For any initial set C, € K (M), the sequence of compact sets {C,, T(Cy), T%(Cy), ... } converges to a fixed point of
T.

Proof.
Part (i) follows from proposition (2.1). For part (ii) and (iii), we proceed as follows:
Let Cy € K(M). If Cy = T(Cy), then the proof is finshed.
So, assume that Cy # T(C,). Define
C, =T(Cy),C; =T(Cy), oy Cpy1 = T(Cy), FformeN.
and suppose that C,,, # C,,+1, forallm € N.If not, then C;, = Ci,4, for some k
implies C, = T(C,) and this complete the proof .
Take C,,, # Cjpyq1, forallm € N. From aremark (1.4) we have
T(Mr(Cy Cis1, Cing1)) + F(Y (Cr1, Cisz, Cing2)) = T(MT (Com» Crnv1,s Cm+1))
+F (Y (T(Cn), T(Cn41), T (Can)))
< F(M7(Coy Gt 1s Cman)),
where

Mg (Crm, Cing1, Cine1) = max{Y (Cp, Crpi1, Crmsn)s (Y(Cm: T(Cp), T(Cm)): (Y(Cm+1: T(Cns1), T(Cm+1)),

¥ (Cm, T (Cim+1).T (Cm+1)) + (¥ (T (C). (Cim+1).(Cm+1)) + (¥ (Crt 1.Cm+1.T (Cim)

R ) e D U Emer s 1)) o (72(C,,), TGy, T(Co)), Y (TA(Co), G, G
Y(T?(Cn), T (Cint1), T(Cmr1))}
= max{Y (Cm, Cm+1, Cn+1), Y (Cy G, Cm+1)(Y(Cm+1f Cin+2, Cm+2)):

((Y(Cm+1.Cm+zvcm+2))+(Y(Cm+z.cm+1-cm+1))+(Y(Cm+1-cm+1.cm+1))
3 )

Y(Cm+2! Cm+1! Cm+1)l (Y(Cm+2! Cm+1! Cm+1))' (Y(Cm+2' Cm+2' Cm+2))
= maX{Y(Cmf Cm+1 Cms1), (Y(Cm+1: Cin+1) Cm+2))r (Y(Cm+1r Cin+2, Cm+2))}-

In case
Mp(Ciny Cint1 Cis1)= Y (G 1, Cimg1, G 2) We have

F(Y (Cms1) Cms 1) Cms2) < F(Y (Crg1s Cmt1s Cmaz) — T(Y (Cong1, Congrs Cms2)), @ contradiction as
T(Y(Cm+1r Cm+1s Cm+2)) > 0.

Therefore, Mp(Cpy Cins1r Cms1)=Y (Crns1, Cms1) Cmy2) @nd we have
F(Y(Cm+1’ Cm+1' Cm+2)) = F(Y(Cm’ Cm+1l Cm+1)) - T(Y(le Cm+1l Cm+1))
< F(Y(Cm' Cm+1' Cm+1))-
Thus {Y (Crns1, Cms+1, Cma2)} is decreasing and hence convergent.

Now to show that
rlLl—IBo Y (Cm+1, Cma1) Cimaz) = 0.

By property of 7, 3 ¢ > 0 with ny € N such that
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T(Y(Crms1, Cm1, Cma2)) > ¢ Vm =y,
Note that
F(Y(Cim+1, Cms1, Cms2) < FY (Cryy Cipg1, Cnse1)) — T(Y(Cmr Cn+1s Cm+1))
< F(Y(Cno1, Cony C)) — T(Y (Cop—1, Cony C)) — T(Y (Cony Con1s Cmsn))
<< (Y(Co, €1, C)) — [(Y(Co, €1, €1)) + (Y (Cy, €2, Cr))
+ -+ 7YV (G Cit1, G
< F(Y(Co, €y, C1)) — 1y,
gives im F(¥ (Crnt1, G, Cns2) = —00, which together with (D2) implies that

ii_m Y (Cm+1, Cnvr) Cs2) = 0.
By (D3), 3 h € (0,1) such that

ry_{g[y(cmﬂ' Cin+1s Cm+z)]h- F(Y(Cns1, Cnr1, Cmaz) = 0.
Thus we have
[¥ (Cos Con1, Cone DIF (Y €y G, Cinsn)) = [¥ (Cony Gy ConsD)1*F (Y (Co, €, €1))

< [Y(Coy Cng1s Crns DI (F (Y (Co, €1, €1)) = 19)) = [Y (Coy Con1, Crne DI (F (Y (Co, €1, C1))
< -1 [Y(Cm' Cin+1) Cm+1)]h <0.

On taking limit we get lim m[Y(Cp41, Cs1, Cma2)]* =0, asn — oo,
n-—-oo
Hence
. 1
&llgomh Y (Cimt1, Cm1, Cma2) = 0.
There exists n; € N such that

1
mh Y (Cra1, Cms1, Cmao) < 1 forall m = n, and hence

1
Y (Cimt1) Cmt1s Cmaz) < —i- forallm = ny.Form,n € N
m'’h

With m > n = n, we have

Y(Cnr Cmr Cm) = Y(Cn! Cn+1' Cn+1) + Y(Cn+1! Cn+2! Cn+2) +ot Y(Cm—l’ Cm! Cm)

(o]

By the convergence of the series Z}?":n%/h , we get Y (Cy, G, Crp) = 0 @S n,m — 0,
j

Therefor {C,,} isaY — Cuachy sequence in M.

Since (290, Y) is complete we have C,, - U, asn — oo for some U € 200, To show U is the fixed point of T,
assume that ¥ —Hausdorff weight assign to the U and T'(U) is not zero .

Now
T(Mr(Cp, U, 1)) + F(Y (Cpyr, T(W), T(V))
=T+ F(Y(T(Co), T(U), T(V))) < F(x(Mr(Cp, U, U)), ..22)
where
M7 (Cp, U, U) = max{Y (Co, U,U),Y(C,, T(C,), T(C),Y(U,TW),TA)),

Y(Co, TW), TW)) + Y(TW), TW),Cy) + YU, TU), T(Cr))
3
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Y(T%(C,), T(Co), T(Co)), Y (T?(C), U, U), Y (T?(C), T(V), T(U))}

Y (Cp, W), T(W))+Y(U,U,T(Cp))+ Y (U,U,Cpsq)
3 )

Y (Cn+2, Cnar, Cnv1), Y (G, U, U), Y (G, T(U), T(UD)}
Now, we consider the following cases

= max{y(cn' U' U)' Y(C‘n' Cn+1' Cn+1): Y(U: T(U)' T(U))'

@i) If M7 (C,,, U, U) =Y (Cp, U, U), then on taking lower limit as n — oo in (2.2) we have
lim inf ©(¥(C,, U, 1)) + F(r(T(),U,U) < F(Y(U,U, 1),

A contradiction as lim inf,,_,, T(v) > 0, for all v > 0.
When M;(C,,, U,U) = Y (Cp, Cpy1, Cnyp)then by taking lower limit as n — oo, we have

lim inf (¥ (Cn, Cns1, Cosa)) + FX(T(W), U, U) S F(Y (U, U, 1)),
Gives a contradiction .
(i) In case M+(C,,U,U) =Y (U, T(U), T(U)) , then we have

(Y (U, T(U),TU))) + FY (T(U),U,U) < F(Y(U,TU),T))),

a contradiction as (Y (U, T(U), T(U))) > 0.
(iii) If My (C,, U, U) = Y (€, T(U),T(W))+ Y(U:;Cn,Cn)+Y(U,Cn+1,Cn+1)
then on taking lower limit as n — oo, we get

o Y(C,, T, TW)+ Y(U,CpCp) + YU, Cpiq, Cpir)
lim inf 7

n-oo 3

’

Y(U,T(U),T(U))+(Y(T(U),U,U))+(Y(U,U,U))) - F (uT@),TW))
3 3 !

+FrrW),u,u) < F(
A contradiction as F is strictily increasing map.
(vii) When M;(Cp,U,U) =Y (Cpy2, Cps1, Cryq) then
lim inf T(V (Curz, Cuvs, Cnen)) + FY(TW), U, U) < F(Y (U, U, 1)),
Gives a contradiction .
(iv) Incase Mg(Cn U,U) = Y(Cnio, U, U) then by taking lower limit as n — oo, we get
lim inf T(Y (Cps2- U, V) + FY(T(V),U,U0) <F(Y(U,U,U)),
Gives a contradiction
(v) Finally if M+(C,, U,U) = Y(Cpy,, T(U), T(U)) then by taking lower limit as n — oo, we get
7111_1}(}0 inf (Y (Cpy2. TU), TU))) + FY(T(U),U,U) < F(Y(U, T(U), T(V))),
a contradiction.
Hence U is the fixed point of T.
To see U is unique fixed point of T, assume that U and V are two fixed points of T with Y (U, V,V)
is not zero.
Since T is a F —contraction mapping we get that
MU, V,V) + FYU,V, V) =t(M:(U,V,V)) + F(Y(T(U), T(V), T(V))) < F(Mg(U,V,V)),
where
M7 (U,V,V) = max{Y(U,V,V),Y(U,TU), TW)),Y(V,T(V), T(V)),

Y(U,TWV),TW) +Y(TW), T(V), T(V)) +Y(V, T, T())
3 ,

Y(T2(U),U,U),Y(T*(U),V,V),Y(T*(U), T(V), T(V))}
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=max{Y(U,V,V),Y(U,U0,0),Y(V,V,V),

Y(U,U,V)+YU,V,V)+Y(V,U,U)
3

,Y(U,0,0),,Y(U,V,V),,Y(U,V,V)}

=Y(U,V,V),
That is
t(Y(U,V,V)) + F(Y(U,V,V)) < F(Y(U,V,V)),
A contradiction as T(Y(U, v, V)) > 0. Thus T has unique fixed point U € K (M).

Conclusions

This paper has been introduce F- iterated function system and employ the Hutchinson -Barnsley theory to
construct a fractal set as its unique fixed point by using Ciric” type generalized F-contractions in a complete G— metric
space.
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