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Abstract 
           In this paper ,we have dealt with the concepts of fuzzy generalized b- irresolute (in short fgb-

irresolute ),fuzzy strongly generalized b-compact  (in short fstg-b-compact ) and fuzzy generalized b-

continuous (in short fgb-continuous ) functions , and find that every fgb-irresolute function is fgb-

continuous and the converse is not true in general .We have also remember the concept of fuzzy 
2T -

space ( f
2T -space ) and we have proved that every fuzzy generalized b-compact ( in short fgb-

compact ) subset of an f
2T -space is fuzzy generalized b-closed ( in short fgb-closed ) , and if X isn’t 

f
2T - space , then need not that every fgb-compact set is fgb-closed . Finally we defined compactly 

fuzzy generalized b-closed ( in short compactly fgb-closed ) set and proved that every fgb-closed 

subset of a space X is compactly fgb-closed . 

Keywords: fuzzy b-open ,compactly fuzzy b-closed set, compactly fuzzy b-k-closed set . 

  

 الخلاصة 
اجدونا ا ,  -bاالبدباةيا المتدتمة    -b,البدباةيا  المةواودا بةدا   -bفي بحثنا هذا تعاملنا مع  تعميم الدواا  البدباةيا المتدةوو  

اان العكس غية وحيح وائماً . أيبداً  تناالندا مومدام الوبداض البدباةي  b-تكان بباةيا متتمة   b-كل بباةيا متةوو  تعميم أن 
2T 

ابةهنا انه في الوباض 
2T  تعميم كل مجماعا بدباةيا مةواودا-b  تكدان بدباةيا مقلةدا-b  ااتدتنتجنا انده اذا لدم يكدن الوبداض مدن ,

ناع 
2T  فليس شةط أن يكان تعميم كل مجماعا بباةيا  مةواودا-b  بدباةيا مقلةدا-b  ًتعمديم المجماعدا البدباةيا   , اعةفندا ايبدا

بشددكل مةوداب فددي الوبداض التةالدداجي البدباةي  تكددان  -b-Kبشدكل مةودداب ابةهندا ان تعمدديم  كدل بددباةيا مقلةدا  -b-Kالمقلةدا 
 . -bتعميم بباةيا مةواوا مقلةا 

, المجماعدددا البدددباةيا  بشدددكل مةوددداب -b, المجماعدددا البدددباةيا  المقلةدددا  b–المجماعدددال البدددباةيا الموتاحدددا  الكلماااال المحيا: اااة 
 بشكل مةواب . -b-Kالمقلةا 

   

 Introduction  
Zadeh in [Zadeh, 1965 ] introduced the fundamental concept of fuzzy sets. The 

study of fuzzy topology was introduced by Chang in [Chang, 1968].The theory of 

fuzzy topological spaces was subsequently developed by several authors. In 

1970Levine [Levine,1970] first considered the concept of generalized closed ( briefly, 

g-closed )sets were defined and investigated.In 1969 [Andrijevic, 1996] introduced a 

class of generalized open sets in a topological space called b-open sets. [Omari and 

Noorani, 2009] introduced and studied the concept of fuzzy generalized b-closed sets 

(briefly fgb-closed) in topological spaces. In this paper, we introduced and studied the 

concepts of compactly fgb-closed set and compactly fgb-k-closed set in fuzzy 

topological spaces.Throughout this paper X  and Y mean fuzzy topological 

spaces.This paper includes three sections . In the first section, we recall the concepts 

of fuzzy b-open,fuzzy b-closed set and b-quasi neighborhood, in the second section 

we have dealt with the concepts of fuzzy gb-open ,fuzzy gb-closed set, fuzzy net and 

some their propositions, in section three we dealt with fuzzy b-compact space, fuzzy 

gb-compact space, fuzzy gb-irresolute function and some theorems related to them. 
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1. Preliminaries 
In this section, we review some basic definitions, propositions and theorems 

about some concepts which are needed in next chapter. 

 

Definition 1.1   [Dang, et al.,1994 ]  

A fuzzy point x  in X  is a fuzzy set defined as follows : 

 













xyif

xyif
yx

             0

             
)(


  where   ;   10   is called a value of x  and x is 

called its support. 

The set of all fuzzy points in X  will be denoted by FP(X). 

 

Remark 1.2 [Dang et al., 1994 ] 

Two fuzzy points x  and y  in X  are said to be distinct if and only if their 

supports are distinct ( i.e yx  ). 

 

Definition 1.3 [Rashid and Ali, 2008 ] 

A fuzzy point x is said to belong to a fuzzy set A  in X  (denoted by : Ax  ) if 

and only if )(xA . 

 

Proposition 1.4 [Dang, et al.,1994 ] 

Let A  and B be fuzzy sets in X . Then A  subset of B  (denoted by : BA  ) if 

and only if Ax  , then Bx  . 

 

Definition 1.5 [Benchalli and Jenifer, 2011] 

A fuzzy point x  is called quasi-coincident with a fuzzy set A , denoted by Aqx    if 

and only if there exists Xx such that 1)(  xA . 

 

Definition 1.6 [Nouh, 2005] 

A fuzzy set A  in X  is called quasi-coincident with a fuzzy set B , denoted by 

BqA    if and only if 1)()(  xBxA , for some Xx .If A  is not quasi-coincident 

with B , then 1)()(  xBxA  for every Xx , and denoted by BqA   . 

 

Proposition 1.7 [Zahran,1989 ] 

Let A  and B are fuzzy sets in X , then : 

i) Ax   if and only if 
cAqx    . 

ii) BA   if and only if cBqA   . 

iii) BA   if and only if Bqx     for each Aqx   . 

iiii) BqA    if and only if cBA  . 

 

Proposition 1.8 [Mohammed, 2011] 

Let A  be a fuzzy set in X  , a fuzzy point )(Aclx   if and only if for every 

fuzzy open set B  in X , if Bqx    , then BqA   . 

 

 

 



Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017. 

 

1898 
 

Definition 1.9 [Benchalli and Jenifer, 2010] 

A fuzzy set A  in X is called: 

i) fuzzy b-open (in short fb-open) set if and only if )))( (int ))( ( int ( AclAclA  . 

ii) fuzzy b-closed (in short fb-closed) set if and only if AAclAcl  )))( (int ))( ( int ( . 

 

Definition 1.10 [Benchalli and Jenifer, 2010] 

A fuzzy set A  in X is called : 

i) b-neighborhood of a fuzzy point x  in X  if  there exists fb-open set B  in X such 

that ABx   . 

ii) b-quasi neighborhood of a fuzzy point x  in X  if  there exists fb-open set B  such 

that AqBx   . 

The family 
bq

xN   consisting of all b-quasi neighborhoods of x  is called the system of 

b-quasi neighborhoods of x  . 

 

Theorem 1.11 [Benchalli and Jenifer ,2010] 

Let A  be a fuzzy set in X , then a fuzzy point )(Abclx   if and only if every b-

quasi neighborhoods of x  is quasi-coincident with A , where 

}set   closed-fb is ,:{)( BBABAbcl   . 

 

2. Fuzzy Generalized b-closed (b-open ) set . 

      This section will contain the concept of fuzzy generalized b-closed ( b-open ) set 

with some of its properties that are necessary to the work. 

 

Definition 2.1 [Benchalli, 2011] 

A fuzzy set A  in X  is called fuzzy generalized b-closed ( in short, fgb-closed ) 

set if BAbcl )(  where BA   and B  is fuzzy open set . 

 

Remarks 2.2 [Benchalli and Jenifer,2010] 

i) A fuzzy set A  in X  is called fgb-open if its complement is fgb-closed. 

ii) Every f-closed ( f-open ) set is fb-closed ( fb-open ) set, and every fb-closed ( fb-

open ) set is fgb-closed ( fgb-open ), but the converse is not true. 

 

Definition 2.3 

Let A  be a fuzzy set in X , the intersection of all fgb-closed sets containing A  is 

called a gb-closure of A  and denoted by gbcl(A) .         

i.e }set     closed-fgb a is ,:{ )( BBABAclgb  . 

 

Definition 2.4 

A fuzzy set A  in X  is called gb-quasi neighborhood of a fuzzy point x  in X  if  

there exists fgb-open set B  such that AqBx   . 
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Definition 2.5 

Let x  be a fuzzy point in X , then the family 
gbq

xN   consisting of all gb-quasi 

neighborhoods of x  is called the system of gb-quasi neighborhoods of x  . 

 

Definition 2.6 [Nouh,2005] 

A mapping )(: XFPDS  is called a fuzzy net in X and is denoted by 

}:)({ DnnS  where D  is a directed set , if n

n
xnS )(  for each Dn , Xx ,and 

]1,0(n  ,then the fuzzy net S  is denoted as }:{ Dnxn

n
  or simply }{ n

n
x  . 

 

Definition 2.7 [Nouh,2005] 

A fuzzy net }:{ Emym

m
  in X  is said to be fuzzy subnet of a fuzzy net 

}:{ DnxS n

n
   if and only if there is a function DEf : such that  

1) fS  ,that is )(

)(

ifi

ifi

xy   for each Ei ,where E is a directed set . 

2) for each Dn  ,there exist some Em such that nmf )( . 

We shall denoted a fuzzy subnet of a fuzzy net }:{ Dnxn

n
 by }:{ )(

)(
Emx mf

mf
 . 

 

Definition 2.8 [Nouh,2005] 

Let ),( TX be a fuzzy topological space and let }:{ DnxS n

n
  be a fuzzy net in 

X and XIA .Then S  is said to be : 

1) Eventually with A if and only if Dm such that qAxn

n  , mn  . 

2) Frequently with A if and only if Dn , Dm , nm  , and qAxm

m  . 

 

Definitions 2.9 

Let }:{ DnxS n

n
  be a fuzzy net in X and )(XFPx  .Then S is said to be : 

i) gb-convergent to x  and denoted by xS
gb

  ,if gbq

xNA


 , Dm  such that 

mnqAxn

n
  ,    , x  is called gb-limit point of S . 

ii) has a gb-cluster point x and denoted by  xS
gb

 , if gbq

xNA


  and 

Dn , Dm , nm   such that  qAxm

m . 

 

Remark 2.10 

i) if n

n
x is a fuzzy net in X  xx

b
n

n
 , )(XFPx   such that  xx

gb
n

n
 then   xx

gb
n

n
. 

ii) if 
n

n
x is a fuzzy net in X , )(XFPx   such that  xxn

n
 ,then  xx

b
n

n  and 

 xx
gb

n

n
  . 

iii) if n

n
x is a fuzzy net in X , )(XFPx   such that   xxn

n
     ,then   xx

b
n

n
     and 

  xx
gb

n

n
    . 
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Proposition 2.11 

Let A  be a fuzzy set in X , and let )(XFPx  . If there exists a fuzzy net n

n
x  

in A  such that  xx
gb

n

n
 , then )(Agbclx  . 

 

Proof:- 

Let n

n
x  be a fuzzy net in A  such that   xx

gb
n

n
 ,then for every gbq

xNB


 ,there exists 

Dm  such that qBxn

n  for all mn  ,see definition 2.8 (i). 

Since Axn

n
 , then cn Aqx

n

~
  , see proposition 1.7(i). 

Then BA   see proposition 1.7 ( iii ), i.e cAB   

Then AqB , see proposition 1.7 ( iiii ). 

Therefore )(Abclx   see theorem 1.11 

Then )(Agbclx  see remark 2.2 (i)□.  

 

 

3.The main Results 
In this section, we defined and study new forms of fuzzy generalized b-compact 

set. 

 

Definition 3.1 

A family }:{  CF  of fuzzy sets in X is called a cover of a fuzzy set A  if 

and only if 


CA



  
, and it is called a fgb-open cover if each member C  is a fgb-

open set .A sub cover of A  is a sub family of F  which is also a cover of  A  . 

 

Definition 3.2 

Let B  be a fuzzy set in X .Then B  is said to be a fgb-compact set if for every 

fgb-open cover }:{ C of B  has a finite sub cover .Let XB  , then X is called 

a fgb-compact space if for every  and XC 1
  







, then there are finite many 

indices n ,...,, 21  such that  X

n

i i
B 1

1



  . 

 

Proposition 3.3 

Every fgb-compact set in X  is fb-compact . 

Proof:- 

Let A  be a fgb-compact set, and let }:{ C  be a fb-open cover of A . 

Then 


CA

 . 

Since every fb-open set is a fgb-open set, see remarks 2.2 ( ii ) . 

Then }:{ C  is a fgb-open cover of A . 

Since A  is fgb-compact set, then there are finite many indices n ,...,, 21  such 

that  
i

CA
n

i


1
  . 
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Then A  is fb-compact set □. 

Definition 3.4 [A.S.Mashour,E.E.Kerre and M.H.Ghanim,1984] 

A fuzzy topological space X  is said to be f-Hausdorff or f 2T -space, if for every 

pair of fuzzy points  yx ,  with different support, there exist two fb-open sets U and 

V  such that 
cyUx )(    , 

cxVy )(    and VqU~
. 

 

Theorem 3.5 [Ali,2014] 

Every fb-compact set of a f 2T - space is fb-closed set. 

 

Theorem 3.6   

Every fgb-compact set of a f 2T - space is fgb-closed set. 

Proof:- 

Let A  be a fgb-compact set in a f 2T -space X . 

Then A  is a fb-compact set. see proposition (3.3) . 

Then by theorem ( 3.5 ), we have A  is a fb-closed set . 

Since every fb-closed set is fgb-closed, see Remarks 2.2 (ii) . 

Then A  is fgb-closed set □. 

 

If X  dosn't  f 2T -space, then need not that every fgb-compact set is fgb-closed set as 

the following example :- 

 

Example 3.7 

Let },{ baX   and let },1,0{ AT XX be a fuzzy topology on X where ]1,0[: XA  

defined by 7.0)(   ,2.0)(  bAaA     

Then A  is fgb-compact set, but not fgb-closed set . 

 

Proposition 3.8 [Ali,2014] 

A fuzzy topological space X  is fb-compact if and only if every fuzzy net in X  

has a b-convergent fuzzy subnet. 

 

Theorem 3.9 

A fuzzy topological space X  is fgb-compact if and only if every fuzzy net in 

X has  gb-convergent fuzzy subnet . 

Proof:- 

By proposition (3.3), proposition (3.8) and remark (2.10 (ii) ) □. 

 

Theorem 3.10 

In any fuzzy space, the intersection of a fgb-compact set with a fgb-closed set is 

fgb-compact. 

Proof:- 

Let A  be a fgb-compact set and B be a fgb-closed set in X . 

Let n

n
x  be a fuzzy net in BA , then n

n
x  be a fuzzy net in A and  n

n

x


 be   a fuzzy net 

in B . 

Since n

n
x  is a fuzzy net in A  and A  is a fgb-compact. 
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Then by theorem (3.9) we have Ax   and  xx
gb

n

n
 . 

Since n

n
x  is a fuzzy net in B such that  xx

gb
n

n
 . 

Then (B)  gbclx   , see proposition (2.11) 

Since B is fgb-closed, then BBgbcl )( , therefore Bx  . 

Then BAx   and  xx
gb

n

n
 . 

Then BA is fgb-compact set □. 

 

Definition 3.11  

 A function YXf :  is called fuzzy generalized b-continuous ( in short fgb-

continuous ), if )(1 Af 
 is fgb-closed set in X  for every f-closed set A  in X . 

 

Theorem 3.12 

A function YXf :  is fgb-continuous if and only if the inverse image of each 

f-open set in Y  is fgb-open set in X . 

 

Definition 3.13  

A function YXf :  is said to be fuzzy generalized b-irresolute ( in short fgb-

irresolute) if the inverse image of each fgb-closed set in Y  is fgb-closed set in X . 

 

lemma 3.14 

Every fgb-irresolute function is fgb-continuous 

Proof:- 

Let YXf :  be fgb-irresolute and let A  be f-closed set in Y . 

Since every f-closed set is fgb-closed set, see remark 2.2 (ii), and since YXf :  is 

fgb-irresolute. 

Then )(1 Af 
 is fgb-closed set in X . 

Then YXf :  is fgb-continuous □. 

 

The converse is not true as the following example. 

Example 3.15 

Let },{ baX  , },{ yxY  ,and let },1,0{ AT xx , },1,0{ BT yy , where ]1,0[: XA  

defined by 3.0)(   ,6.0)(  bAaA ,and ]1,0[: YB  defined by 

2.0)(   ,5.0)(  yBxB . 

))},(),,((,1,0{)(  baXbO xx  where 4.0  or 7.0 . 

))},(),,((,1,0{)( **  yxYbO yy  where 5.0*   or 8.0*  . 

Then the function YXf :  defined by ybfxaf  )(   ,)(  is fgb-continuous but 

not fgb-irresolute. 

Definition 3.16 

A function YXf :  is called a strongly fuzzy generalized b-compact (in short 

sfgb-compact) function if and only if )(1 Af 
 is fgb-compact set in X  for every fgb-

compact set A  in Y . 
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Proposition 3.17 

Let YXf :  be a fgb-irresolute function, if A  is fgb-compact in X , then )(Af  is 

fgb-compact set in Y  . 

Proof:- 

Let }:{ C  be a fgb-open cover of )(Af . 

Then 


CAf

)( . 

Since f is fgb-irresolute function, then )(1 Af 
 is fgb-open set in X . 

Then the collection }:)({ 1  Cf  is a fgb-open cover of A . 

Then )()())(( 111







CfCfAffA 



   

Since A  is fgb-compact set in X , then there are finite many indices n ,...,, 21  

such that  )(1

1
i

n

i
CfA 




 . 

Then i

n

i
i

n

i
i

n

i

CCffCffAf  











1

1

1

1

1

))(()()(  . 

Then )(Af  is fgb-compact set □. 

  

Definition 3.18  

A fuzzy subset W of X  is called compactly fuzzy generalized b-closed ( in short 

cfgb-closed ) set if KW  is fgb-compact set for every fgb- compact set K  in X . 

 

Example 3.19 

Every fuzzy subset A of indiscrete fuzzy space is cfgb-closed set . 

 

Proposition 3.20   

Every fgb-closed subset of X is cfgb- closed set . 

Proof :- 

 Let A  be a fgb- closed subset of X , and let K  be a fgb- compact subset in X . 

 Then by theorem (3.10) , we have KA  is fgb- compact set . 

 Then A  is cfgb- closed set □. 

 

The converse of above proposition is not true in general as the following example . 

Example 3.21 

Let },{ baX   and let  T  be the indiscrete fuzzy space on X . 

Then XIA :  which is defined by 2.0)(    ,1.0)(  bAaA  is cfgb-closed set, but it 

is not fgb-closed set .  

 

Proposition 3.22 

Let YXf :  be a fgb-irresolute , sfgb-compact,  bijective function, then A  is cfgb-

closed subset in X  if and only if  )(Af is cfgb-closed set in Y . 

Proof :- 

   Let A  be cfgb-closed set in X , and let K  be a fgb-compact set in Y . 

 Since f is sfgb-compact function, then )(1 kf   is fgb- compact set in X . 

 Since A  is cfgb-closed set in X  
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Then )(1 KfA   is fgb- compact set in X , see theorem (3.10) 

 Since f  is fgb-irresolute function , Then by proposition (3.17) we have 

))(( 1 KfAf  is fgb-compact set   in Y . 

Since f  is bijective function. 

 Then KAfKfAf   )())(( 1 . 

Then )(Af is cfgb- closed set in Y . 

   Let )(Af be cfgb-closed set in Y , and let K be fgb-compact set in X  

 Since f is fgb-irresolute function, then by proposition (3.17),we have )(Kf  is fgb-

compact set in Y . 

Since )(Af is cfgb-closed set in Y . 

Then )()( KfAf   is fgb-compact set in Y . 

Since f  is sfgb-compact function , then ))()((1 KfAff  is fgb-compact set in X . 

Since f  is bijective function , then KAKfAff  ))()((1 . 

 Then KA  is fgb-compact set in X . 

Then A  is cfgb-closed set in X □. 

 

Definition 3.23 

A fuzzy subset A  of X is called compactly fuzzy generalized b-k-closed ( in 

short cfgb-k-closed ) set, if KA  is fgb-closed set for every fgb-compact set K  in 

X . 

 

Example 3.24 

Every fuzzy subset of a fuzzy discrete space is cfgb-k-closed set . 

 

Proposition 3.25 

Every cfgb-k-closed subset of X  is  cfgb-closed . 

Proof :- 

Let A  be a cfgb-k-closed subset of X , and let K  be a fgb- compact set in  X . 

Then KA  is fgb- closed set . 

Since KKA  , and K  fgb-compact set , then by theorem (3.10), we have KA  

is fgb-compact set . 

Therefore A  is cfgb-closed set □. 

 

Theorem 3.26 

Every cfgb-closed set in f 2T - space is cfgb-k- closed set . 

Proof:- 

 Let A  be cfgb-closed subset of a f 2T - space X , and let K  be a fgb- compact set in 

X . 

 Then KA  is fgb-compact set . 

 Since X is f 2T - space , then KA  is fgb- closed set by  theorem ( 3.6) . 

Then A  is cfgb-k-closed □. 

 

Proposition 3.27 

Let Y  be f 2T - space , and let YXf :  be a function, if the only fuzzy subsets of Y  

which are cfgbk-closed are the whole space and the empty set, and if f is fsgb-

compact, and fgb-irresolute function, then f  is     surjection . 
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Proof:- 

Let YXf : be a fsgb-compact, and fgb-irresolute function. 

Let K  be a fgb-compact subset of Y . 

Since f  is a fsgb-compact function , then )(1 Kf   is fgb-compact set in X . 

Since f  is fgb-irresolute function, then we have ))(( 1 Kff  is fgb-compact in Y , see 

proposition (3.17). 

Since Y  is fuzzy 
2T -space, then by theorem (3.6 ) ,we have ))(( 1 Kff   is       fgb- 

closed in Y . 

But KXfKfXfKff   )())(())(( 11 . 

Then KXf )(  is fgb-closed set in Y . 

Then )(Xf is cfgb-k-closed set in Y , but )(Xf is not empty set, then YXf )( . 

Therefore YXf : is surjection function □. 
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