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Abstract

In this paper ,we have dealt with the concepts of fuzzy generalized b- irresolute (in short fgh-
irresolute ),fuzzy strongly generalized b-compact (in short fstg-b-compact ) and fuzzy generalized b-
continuous (in short fgh-continuous ) functions , and find that every fgb-irresolute function is fgb-

continuous and the converse is not true in general .We have also remember the concept of fuzzy T, -
space ( fT,-space ) and we have proved that every fuzzy generalized b-compact ( in short fgb-
compact ) subset of an fT, -space is fuzzy generalized b-closed ( in short fgb-closed ) , and if X isn’t

fT,- space , then need not that every fgb-compact set is fgb-closed . Finally we defined compactly
fuzzy generalized b-closed ( in short compactly fgb-closed ) set and proved that every fgb-closed

subset of a space X is compactly fgb-closed .
Keywords: fuzzy b-open ,compactly fuzzy b-closed set, compactly fuzzy b-k-closed set .
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Introduction

Zadeh in [Zadeh, 1965 ] introduced the fundamental concept of fuzzy sets. The
study of fuzzy topology was introduced by Chang in [Chang, 1968].The theory of
fuzzy topological spaces was subsequently developed by several authors. In
1970Levine [Levine,1970] first considered the concept of generalized closed ( briefly,
g-closed )sets were defined and investigated.In 1969 [Andrijevic, 1996] introduced a
class of generalized open sets in a topological space called b-open sets. [Omari and
Noorani, 2009] introduced and studied the concept of fuzzy generalized b-closed sets
(briefly fgb-closed) in topological spaces. In this paper, we introduced and studied the
concepts of compactly fgb-closed set and compactly fgb-k-closed set in fuzzy
topological spaces.Throughout this paper X and Y mean fuzzy topological
spaces. This paper includes three sections . In the first section, we recall the concepts
of fuzzy b-open,fuzzy b-closed set and b-quasi neighborhood, in the second section
we have dealt with the concepts of fuzzy gb-open ,fuzzy gb-closed set, fuzzy net and
some their propositions, in section three we dealt with fuzzy b-compact space, fuzzy
gb-compact space, fuzzy gb-irresolute function and some theorems related to them.
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1. Preliminaries
In this section, we review some basic definitions, propositions and theorems
about some concepts which are needed in next chapter.

Definition 1.1 [Dang, et al.,1994 ]
A fuzzy point x, in X is a fuzzy set defined as follows :
o if y=x

X“(y):{o if y=x

called its support.
The set of all fuzzy points in X will be denoted by FP(X).

} where 0<a <1 ;« is called a value of x, and x is

Remark 1.2 [Dang et al., 1994 ]
Two fuzzy points x, and y, in X are said to be distinct if and only if their

supports are distinct (i.e X =Y).

Definition 1.3 [Rashid and Ali, 2008 ]
A fuzzy point x,, is said to belong to a fuzzy set A in X (denoted by : x, € A) if

and only if a < A(X).

Proposition 1.4 [Dang, et al.,1994 ]
Let A and Bbe fuzzy sets in X . Then A subset of B (denoted by : A<B) if

and only if x, € A, then x, € B.

Definition 1.5 [Benchalli and Jenifer, 2011]
A fuzzy point x, is called quasi-coincident with a fuzzy set A, denoted by x,q A if

and only if there exists x € X such that « + A(x) >1.

Definition 1.6 [Nouh, 2005]
A fuzzy set A in X is called quasi-coincident with a fuzzy set B, denoted by
AqB if and only if A(x)+B(x)>1, for some xe X.If A is not quasi-coincident

with B, then A(x)+B(x) <1 for every x € X, and denoted by A B.

Proposition 1.7 [Zahran,1989 ]
Let A and B are fuzzy setsin X , then :

i) x, € A ifandonly if x, g A°.

ii) A<B ifandonly if AgB°.

i) A<B ifandonly if x, g B foreach x,q A.
iiii)) AgB ifand only if A<B°.

Proposition 1.8 [Mohammed, 2011]
Let A be a fuzzy set in X , a fuzzy point x, e cl(A) if and only if for every

fuzzy openset B in X ,if x, qB, then AqB.
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Definition 1.9 [Benchalli and Jenifer, 2010]
A fuzzy set A in X is called:

i) fuzzy b-open (in short fb-open) set if and only if A= (INt(cl (A))vcl (int (A)))
i) fuzzy b-closed (in short fb-closed) set if and only if (int (cl (A)) v cl (int (A))) < A.

Definition 1.10 [Benchalli and Jenifer, 2010]
A fuzzy set A in X is called :

i) b-neighborhood of a fuzzy point X, in X if there exists fb-open set B in X such
that X, e B< A,

ii) b-quasi neighborhood of a fuzzy point X, in X if there exists fb-open set B such
that X,qB<A .

The family fo, consisting of all b-quasi neighborhoods of X, is called the system of

b-quasi neighborhoods of X, .

Theorem 1.11 [Benchalli and Jenifer ,2010]
Let A be a fuzzy set in X, then a fuzzy point X, € bcl(A) if and only if every b-

quasi  neighborhoods of X, is quasi-coincident with A, where
bcl(A) = A{B: A< B,Bisfb-closed set} .

2. Fuzzy Generalized b-closed (b-open ) set .
This section will contain the concept of fuzzy generalized b-closed ( b-open ) set
with some of its properties that are necessary to the work.

Definition 2.1 [Benchalli, 2011]
A fuzzy set A in X is called fuzzy generalized b-closed ( in short, fgb-closed )
set if bcl(A) < B where A<B and B is fuzzy open set .

Remarks 2.2 [Benchalli and Jenifer,2010]

i) A fuzzy set A in X is called fgb-open if its complement is fgb-closed.
ii) Every f-closed ( f-open ) set is fb-closed ( fb-open ) set, and every fb-closed ( fb-
open ) set is fgb-closed ( fgb-open ), but the converse is not true.

Definition 2.3
Let A be a fuzzy setin X, the intersection of all fgb-closed sets containing A is

called a gb-closure of A and denoted by gbcl(A) .
i.e ghcl(A)=A{B:A<B,Bisafgb-closed set}.

Definition 2.4
A fuzzy set A in X is called gh-quasi neighborhood of a fuzzy point X, in X if

there exists fgb-open set B such that X,qB<A .
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Definition 2.5
Let X, be a fuzzy point in X , then the family ngzq consisting of all gb-quasi

neighborhoods of X, is called the system of gb-quasi neighborhoods of X, .

Definition 2.6 [Nouh,2005]
A mapping S:D — FP(X)is called a fuzzy net in X and is denoted by

{S(n):n e D}where D is a directed set , if S(n)=x; for each neD, xe X ,and
a, €(0,1] ,then the fuzzy net S is denoted as {xgn :n e D} or simply {x;n} .

Definition 2.7 [Nouh,2005]
A fuzzy net ¢={y; :meE}in X is said to be fuzzy subnet of a fuzzy net

S ={x; :neD} ifand only if there is a function f : E — Dsuch that

1) ¢=So f thatis y, =x;{ foreach i € E ,where Eis a directed set .

2) for each n e D ,there exist some m e E such that f(m)>n.

We shall denoted a fuzzy subnet of a fuzzy net {x; :ne D}by {x,” :meE}.

Definition 2.8 [Nouh,2005]
Let (X,T)be a fuzzy topological space and let S={x; :ne D}be a fuzzy net in

Xand Ael*.Then S is said to be :
1) Eventually with Aif and only if 3m e Dsuch that x; gA , n>m.

2) Frequently with Aifand only if Yne D, 3me D, m>n, and x;“qu .

Definitions 2.9
Let S={x; :neD}beafuzzynetin X and x, € FP(X) .Then Sis said to be :

gb
i) gb-convergent to x, and denoted by S—x, ,if VAe Nf’fq, dme D such that

X; QA ,vnx=m, X, is called gb-limit point of S.

gb
i) has a gb-cluster point x,and denoted by Sax,, if VAe ngfq and
VneD,3dme D,m>n such that x; gA .
Remark 2.10

b gb gb
i) if x; isafuzzynetin X x; —X,,X, € FP(X) such that x; —x,then x; aXx,.

b
if) if x; is a fuzzy net in X ,x, e FP(X) such that x; — x,then x7 —x_ and
gb

n
Xp —>X, -

b
iii) if x is a fuzzy net in X, x, € FP(X) such that x; « X, then x; «a X, and

1899



Journal of University of Babylon, Pure and Applied Sciences, Vol.(25), No.(5), 2017.

Proposition 2.11
Let A be a fuzzy setin X, and let x, € FP(X). If there exists a fuzzy net x;n

gb
in A such that x; —x,, then x, € gbcl(A).

Proof:-

gb
Let x, be a fuzzy netin A such that x) —x,then for every B e N there exists
m e D such that x; qB for all n>m,see definition 2.8 (i).
Since x; € A, then x; GA° , see proposition 1.7(i).

Then A< B see proposition 1.7 (iii), i.e B<A°
Then AgB, see proposition 1.7 ( iiii ).

Therefore x_ € bcl(A) see theorem 1.11

Then x_, € gbcl(A) see remark 2.2 (i)o.

3.The main Results
In this section, we defined and study new forms of fuzzy generalized b-compact
set.

Definition 3.1
A family F ={C, :a € Q} of fuzzy sets in X is called a cover of a fuzzy set A if

and only if A< VQCa , and it is called a fgb-open cover if each member C, is a fgb-

open set .A sub cover of A is asub family of F which is also a cover of A .

Definition 3.2
Let B be a fuzzy set in X .Then B is said to be a fgb-compact set if for every

fgb-open cover {C, : @ € Q}of B has a finite sub cover .Let B = X, then X is called

a fgb-compact space if for every a e Qand \/QCa =1, , then there are finite many
n
indices a,,a,,... a, € Q such that ixleBai =1 .

Proposition 3.3
Every fgb-compact set in X is fb-compact .
Proof:-

Let A be a fgb-compact set, and let{C, : & € Q} be a fb-open cover of A.
Then A< v C,.

Since every fb-open set is a fgb-open set, see remarks 2.2 (i) .
Then {C, : @ € Q} is a fgb-open cover of A.

Since A is fgb-compact set, then there are finite many indices &,,@,,...,a, € Q such

that AS_vlCa. .
= i
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Then A is fb-compact set o.
Definition 3.4 [A.S.Mashour,E.E.Kerre and M.H.Ghanim,1984]

A fuzzy topological space X is said to be f-Hausdorff or fT,-space, if for every
pair of fuzzy points X,, Y, with different support, there exist two fb-open sets U and

V suchthat X, eU <(y,)", ¥, €V <(x,)* and UGV .

Theorem 3.5 [Ali,2014]
Every fb-compact set of a fT, - space is fb-closed set.

Theorem 3.6

Every fgb-compact set of a fT, - space is fgb-closed set.
Proof:-

Let A be a fgh-compact setin a fT,-space X .

Then A is a fb-compact set. see proposition (3.3) .

Then by theorem (3.5), we have A is a fb-closed set .
Since every fb-closed set is fgb-closed, see Remarks 2.2 (ii) .
Then A is fgb-closed set o.

If X dosn't fT,-space, then need not that every fgh-compact set is fgb-closed set as
the following example :-

Example 3.7

Let X ={a,b} and let T ={0, 1, , A}be a fuzzy topology on X where A: X —[0]]
defined by A(a)=0.2, A(b)=0.7

Then A is fgh-compact set, but not fgh-closed set .

Proposition 3.8 [Ali,2014]
A fuzzy topological space X is fb-compact if and only if every fuzzy net in X
has a b-convergent fuzzy subnet.

Theorem 3.9
A fuzzy topological space X is fgb-compact if and only if every fuzzy net in
X has gb-convergent fuzzy subnet .
Proof:-
By proposition (3.3), proposition (3.8) and remark (2.10 (ii) ) o.

Theorem 3.10
In any fuzzy space, the intersection of a fgh-compact set with a fgb-closed set is
fgb-compact.
Proof:-
Let A be a fgh-compact set and B be a fgb-closed set in X .
Let xgn be a fuzzy net in AA B, then x;n be a fuzzy net in Aand xg be afuzzy net
in B.
Since x, isafuzzynetin A and A is a fgh-compact.
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gb
Then by theorem (3.9) we have x, € A and x; —X,.

gb
Since x, isa fuzzy netin Bsuch that x; —Xx,.
Then x, e gbcl (B) , see proposition (2.11)

Since B is fgb-closed, then gbcl (B) = B, thereforex, € B.

gb
Then x, e AAB and x} —Xx,.

Then A A Bis fgb-compact set o.

Definition 3.11
A function f:X —Y s called fuzzy generalized b-continuous ( in short fgb-

continuous ), if f(A) is fgb-closed setin X for every f-closed set A in X .

Theorem 3.12
A function f: X =Y is fgb-continuous if and only if the inverse image of each

f-opensetin Y is fgh-open setin X .

Definition 3.13
A function f: X —Y is said to be fuzzy generalized b-irresolute ( in short fgb-

irresolute) if the inverse image of each fgb-closed set in Y is fgbh-closed set in X .

lemma 3.14
Every fgb-irresolute function is fgb-continuous
Proof:-
Let f:X —Y be fgb-irresolute and let A be f-closed set in Y .

Since every f-closed set is fgb-closed set, see remark 2.2 (ii), and since f: X =Y is
fgb-irresolute.

Then f(A) is fgb-closed setin X .
Then f: X =Y is fgb-continuous o.

The converse is not true as the following example.
Example 3.15

Let X ={a,b},Y ={x,y}.and let T ={0, 1,, A}, T"={0,.1,,B}, where A:X —[0]]
defined by A(a) =0.6, A(b)=0.3,and B:Y —>[0]] defined by
B(x)=0.5, B(y)=0.2.

bO(X)={0,.1,,((a,a),(b, 5))} where & >0.4 or f>0.7.

bO(Y) ={0, 1,,((x,@"),(y, 8"))} where & >0.5 or 8~ >0.8.

Then the function f:X =Y defined by f(a)=x, f(b)=Yy is fgb-continuous but

not fgb-irresolute.
Definition 3.16
A function f: X =Y is called a strongly fuzzy generalized b-compact (in short

sfgb-compact) function if and only if f‘l(A) is fgh-compact set in X for every fgb-
compactset A in Y.
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Proposition 3.17

Let f:X =Y be a fgb-irresolute function, if A is fgb-compact in X , then f(A) is
fgb-compact setin Y .

Proof:-

Let {C, : @ € O3} be a fgb-open cover of f(A).

Then f(A)< VQCa,

Since f is fgb-irresolute function, then f (A) is fgb-open setin X .
Then the collection{f *(C,) : @ € O} is a fgb-open cover of A.
Then A< fH(f(A) < f‘l(vQCa): va‘l(Ca)

Since A is fgb-compact set in X , then there are finite many indices &, a,,...,a, € Q

suchthat A< v f(C,).

Then f(A)< f(y/ T7C,) =\ F(f(C,))<\C, .

i=1 i=1 i=1

Then f(A) is fgb-compact set o.

Definition 3.18
A fuzzy subset W of X is called compactly fuzzy generalized b-closed ( in short
cfgb-closed ) set if W A K is fgh-compact set for every fgh- compact set K in X .

Example 3.19
Every fuzzy subset A of indiscrete fuzzy space is cfgb-closed set .

Proposition 3.20

Every fgb-closed subset of X is cfgb- closed set .

Proof :-

Let A be a fgb- closed subset of X , and let K be a fgh- compact subset in X .
Then by theorem (3.10) , we have A A K is fgb- compact set .

Then A is cfgb- closed set o.

The converse of above proposition is not true in general as the following example .
Example 3.21
Let X ={a,b} and let T be the indiscrete fuzzy space on X .

Then A: 1 — X which is defined by A(a) =0.1, A(b)=0.2 is cfgb-closed set, but it
is not fgb-closed set .

Proposition 3.22
Let f: X —Y be afgb-irresolute , sfgh-compact, bijective function, then A is cfgb-

closed subset in X if and only if f (A)is cfgb-closed setin Y .

Proof :-
— Let A be cfgb-closed setin X , and let K be a fghb-compact setin Y .

Since f is sfgh-compact function, then f (k) is fgb- compact set in X .
Since A is cfgb-closed setin X
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Then AA f (K) is fgb- compact set in X , see theorem (3.10)

Since f is fgb-irresolute function , Then by proposition (3.17) we have
f (AA f(K))is fgh-compact set inY .

Since f is bijective function.

Then f(AA fH(K)) = f(A)AK.

Then f(A)is cfgb- closed setin Y .

< Let f(A)be cfgb-closed setin Y , and let K be fgb-compact setin X

Since f is fgb-irresolute function, then by proposition (3.17),we have f(K) is fgb-
compact setin'Y .

Since f(A)is cfgb-closed setin Y .

Then f(A) A f(K) is fghb-compact setin Y .

Since f is sfgb-compact function , then f *(f (A) A f(K))is fgb-compact set in X .
Since f is bijective function , then f *(f(A) A f(K))=AAK.

Then AA K is fgh-compact setin X .

Then A is cfgb-closed setin X o.

Definition 3.23

A fuzzy subset A of X s called compactly fuzzy generalized b-k-closed ( in
short cfgb-k-closed ) set, if AA K is fgb-closed set for every fgb-compact set K in
X.

Example 3.24
Every fuzzy subset of a fuzzy discrete space is cfgb-k-closed set .

Proposition 3.25

Every cfgb-k-closed subset of X is cfgb-closed .

Proof :-

Let A be a cfgb-k-closed subset of X , and let K be a fgh- compact setin X .

Then A A K is fgb- closed set .

Since AAK <K, and K fgh-compact set , then by theorem (3.10), we have AA K
is fgb-compact set .

Therefore A is cfgb-closed set o.

Theorem 3.26

Every cfgb-closed set in fT, - space is cfgb-k- closed set .

Proof:-

Let A be cfgb-closed subset of a fT,- space X , and let K be a fgb- compact set in

X.
Then AA K is fgh-compact set .
Since X is fT,- space, then AA K is fgb- closed set by theorem ( 3.6) .

Then A is cfgb-k-closed .

Proposition 3.27
Let Y be fT,-space, and let f: X —Y be a function, if the only fuzzy subsets of Y

which are cfgbk-closed are the whole space and the empty set, and if f is fsgb-
compact, and fgb-irresolute function, then f is  surjection .
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Proof:-
Let f: X — Y be afsgh-compact, and fgb-irresolute function.

Let K be a fgh-compact subset of Y .
Since f is a fsgh-compact function , then f *(K) is fgb-compact setin X .

Since f is fgb-irresolute function, then we have f (f *(K))is fgb-compact in Y , see
proposition (3.17).

Since Y is fuzzy T,-space, then by theorem (3.6 ) ,we have f(f *(K)) is fgb-
closedin Y.

But f(f"(K))=f(XAf*(K)=Ff(X)AK.

Then f(X)AK isfgb-closed setinY .

Then f(X)is cfgb-k-closed setin Y , but f(X)is not empty set, then f(X)=Y.
Therefore f : X — Y is surjection function o.
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