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Abstract

We are concerned in the paper with spectral properties of indefinite Sturm — Liouville type problems with Cauchy
boundary conditions where differential equations coefficients are real valued integrable functions, and the spectral
parameter is also purely complex number. And also we get bounds on the real and imaginary parts of indefinite Sturm-
Liouville problem with cauchy conditions.

1. Introduction
In this study, we derived the real and imaginary parts for an eigenvalue corresponding to the spectral problem
-y" +q()y = 2p(x)y o)
y(a)=0,y'(b) =0 @
where x € [a,b],A € C.

The functions g and p are assumed to be real valued integrable functions, and p takes on positive and negative
values on subsets of [a, b] with the positive Lebesgue measure. Thus, indefinite Sturm-Liouville problems are used to
define such a problem.

Many authors have obtained bounds of non-real eigenvalues for the different type of spectral problems [1],[3],[6],
and [7].

Jussi, Shaozhou, Friedrich, and Jaingang obtained boundaries in 2013 on non-real proper values of indefinite
Sturm-Liouville Problems with Dirichlet boundary conditions where the Sturm-Liouville equation coefficients are real
integrable functions [1].

The main purpose of this paper is to prove boundaries on the unreal spectrum of second-order differential equation
with Cauchy boundary conditions (1)-(2), and we get boundaries of the eigenvalue, and the authors [1]and [7 ] find
boundaries of the eigenvalues of Sturm-Liouville's boundary conditions with Dirichlet.

2. Fundamental Results
In this section, we look at the issue (1)-(2) and progress on the boundaries obtained in [1].
Theorem 2.1 Suppose that there exists a function g € H'(a, b) such that g(x)p(x) > 0 on (a, b)and let € > 0 be such
that
1

a={x€(ab):glx)pkx) <e} < PCETPRTE,
Then for any non- real eigenvalue 2 € C\R of problem (1)-(2), we have
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2

2
Im2l <>vb—a ||g'||2(||q—||1 + g -z +Q(b)|;v(b)|2)
and

2 2
|ReA| < E(Ilq =1l +\/Ilq -3+ Q(b)ly(b)lz) (Vb—a llg'll, +2(b — )llgllellg —II,)

Proof. Let y(x) be an eigenfunction corresponding toA. Without loss of generality we can assume that ||y||, = 1.
Multiplication of the differential equation in (1) by ¥, and integration from x to b ff —y"ydx + f:q(x)yydx =

[} ap()yyex

ALL plyldx = y' ) 700 + [2(1y'1 + a@lyl?) dx ©)
Taking the real and imaginary part of (3) gives

(Re 1) [} plyl?dx = Re[y' ()3 ()] + [ (Iy'12 + q(0)lyI?) dx @
(m ) [” plyl2dx = Imy' (07 ()] 5)

Hence by setting x = a in (4) and (5) we obtain
b b
(Re A)f plyl?dx = Rely'(@)y(a)] +f Uy'I? + q()1yl?) dx
Since y(a) = 0, then the conjucate of y(a) thatis y(a) =0
b b
Re ) [ plyPPax = [ (y'F +aGoly)
a a

and
b
(tm ) [ plylax = imly' @@,
a
Then
b
(Iml)f plyl?dx =0,
a
I2 plyl2dx = [P(y'1? + q@)1y1») = 0. 6)
Now, for each x € [a, b] we have that
yl =y < [yl <vb=ally'll, @

Moreover, putting Q (x) = f; q_(t) dt for x € [a, b], the relation (6) yields
b

[ @i+ aco =0

a

b b
fly’lz=—f qlyl?
a a

Iy'lI3 = = [ qlyl? < [} q-Iy1? =[] Q'lyl?
And integrating by parts

b b
J Q'lyI* = e)ly®)I* - Q@)ly(@I* - 2] Qlylly'l

= QW)Y —2 [* Q Re(y")
< Q)Ny®)1% + 2llg_ll1lly'll,
This implies [ly’l1Z = 2llg_ll;Ily"ll, < QD) ly(b)|?
Ny 113 = 2llq_ll Iy’ 1l + lig-1I3 < llg_1I3 + Q(B)|y(b)|?
Y1z = llg_llD? < llg_lI2 + Q(b) |y (b) |2
ly'll = llg_ll; < llq-1IZ + @)y ()2
ly'llz < llg-lly + Vllq-11Z + Q) 1y (|2
And |y| < Vb —ally’ll, ,then

Iyl < VB =2 (llg-lly + VTla_IF + QB y®IP) ®
And
y"l2 < llg_lly +/TTq_TIz + QB y (B2 ©)

Now, let A = {x € (a,b): g(x)p(x) < €}.
Then we obtain from equations (7), (8) and (9) that

b b b
! Zd d — 2_ 2
Lg(x)fxp(my(tn tdx jagp|y| >€fAc'y'
:6(1—fA|y|2)

231



Journal of University of Babylon for Pure and Applied Sciences,VVol.(27), No.(4): 2019

> e(1 - llyll%1aD
> €

E.
Hence, the relations (5),(8) and (9) imply
lm Al [} 7 plyl?g’ = [} g' Im(y') (10)

b
f g’lm(y’i)‘
a
b ! !
<J,lg'yy'l
< 1y lollg'llzlly Il i
<vb=allg'llz (llg ~ll: + Vg =IZ + QB ®IP)

2
i 11 < 2VB=allg'll <||q “ll + Jlla -1z + Q(b)ly(b)lz)
So that the estimates on imaginary A is established.
For the real part we exploit (4) and (6) to derive
SIRe 21 < [} ' @(Re(y' ()7 (0) + [ (Iy'I? + qly|*))dx| (12)
< Y llollg'lizlly’llz + |1, gCly'1? + alyl?)|

Now, setting D, = |y’|? + q.|y|?, D_ = q_|y|? and
D =D, —D_ = |y'|*> + qly|?, we obtain

b b
ng Sf lg¥D+ + g7D_|
a a

b
< llgll [°(D +2D)

b
=2lIgllw [, q-lyI?
. < 2llgllo Iyl llg-Ily
SIRe Al < lyllwllg' Iy Iz + 2llglle Iy 1% llq-1lx

EII A <
2 m =

VE=allg'll, (llg ~Il; + VTq Tz + QO ®IF) +
2lgle(VE=a)" (llg ~Ils +Ta =12 + QB ®F) llg -1

2

Zm”g/“z<”q_”1+JHq—”%‘I’Q(b)Iy(b)lz) -I—Z(b

2

—a)llglle (Ilq =l + \/Ilq -l + Q(b)ly(b)lz) lla =1

2 2
|Re 2| < E<I|q =l +\/||q —IF + Q(b)IJ/(b)|2> (Vb —allg'lly + 2(b — @)llgllellq —Il1)

Definition Let o be a real-valued function defined on the closed bounded interval [a, b] and p = {xg, x4, ..., X} be a
partition of [a, b]. We define the variation of ¢ with respect to P by V (o, P) = ¥5 |0 (x;) — 0 (xi1)|

And the total variation of & on [a, b] by

TV (o) = sup{V(a,P)/ P apartion of [a,b]}.

Definition A real valued function o on the closed, bounded interval [a, b] is said to be of bounded variation on [a, b] if
TV (o) < oo.

Lemma 2.1[4] Let f = 0 and g be a functions of bounded variation on the closed interval J, then

ffdg < (inff +Varf) (supfdg)

Ji J J Kc] Jk

Where Var; f = fjldf(x)l and sup is taken over all compact subset of J.

Lemma 2.2 Let o be of bounded variation over all of [a, b], that is o satisfies the inequality f:lda(x)l < oo. Then for
all x € (a, b] and for every § > 0 there exista p = p(8,x) > 0 such that

FIf@Rldo@)] < p(6,x) [ If(O1dt + 8 [If'(t)|2dt (12)

Where p(6,x) = $+ %, c= fflda(x)l

Proof. We assume Lemma 1 with f and g replaced by |£|? and the variation of ¢ satisfy the assumptions of Lemma 1
we have that

FAF@PIdo©)] < (infix ) £ (012 + Varp, £ (O12) ([} 1do(®)]) (13)
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For x € (a, b]
infep [f (D17 < = [LIF(0)17de (14)

b b
VarlfOF = [ lalf P = | 2ifollford

= 712 Re(f )T @) dt
And by Cauchy Schwarz inequality

1

b b % b 2
leRE(f(t))(f’(t))MtSZ(f If(t)|2> (f I(f’(t)lz>

1
2

Hence, Varp, £ (012 < 2 ([ IF @) ([ 1¢7©F) (15)

Leta() = (S 1f(©)12) and B = (F1CF (O )
Then inserting (14), (15) in to (13) yields

b 1 b
[ Ir@Ple©) < (= 02w + 2apw) [ ldoo)

For someé > 0, we see that
2
(\/%a(x) - \/3/?(96)) >0
And 50 2a(x)B(x) < 5 a?(x) + 56%(x)
Thus
LI OPIde©] < (7502 +3a200 + 867 [} 1do(0)]

< (G5+3) KIr@P +8 G ©F) [do)

Replacing & withg where ¢ = f;ldo(t)l , We have

LI OPIe®) < (55 +) K@ Pde+8 167 ©Pde) (16)
Hence we obtain equation (12).
Lemma 2.3 Let g_ € L*(a,b) and y € D. Then for all x € (a, b]

Fly®Pq©at <35 +5) [ly@IPde + 8 71" (012t 17)

Where ¢ = |lq_||,D = {y € L*(a,b): —y" + q(x)y € L?(a,b),y(a) = y'(b) = 0}.

Proof. This follows from Lemma 2.2 with f(t) and o(t) replaced by y(¢) and ftb q_dx, respectively, so that
Fldo@1 = [7|a(f; a-(oan)| = [ q_(e)at.

Using this result in (12), we have (17).

Theorem 2.2 Suppose that there exists a function g € H'(a, b) such that gp > 0 on (a,b) and let e > 0 be such that
A= {x € (a,b): g(x)p(x) < €}, where € > 0 is choosen such that A°# @ and

Al <

8(b — a)llg-IIF
Then for any non- real eigenvalue 1 € C\R of problem (1)-(2), we have

2
lTm 4] < E”ﬂ’”z\/z +4(b - allq —llh <I|q =l + Jllq -+ Q(b)ly(b)lz)

And

|Rel| < é(llq =l + Jllq =IIF + Q(b)ly(b)lz) [Ilg'llz\/Z +4(b—a)llg —Il, +2(b

—a) (Ilq =l + Jllq —IIF + Q(b)ly(b)lz) llq —II1IIgIIw]
Proof. From Equation (6)

b b b
f ly'[2dt = — f Y12 q(0)dr < f 12 g_(6)dt
a a a

Which yields
, b
ly'lI3 < [, ly1? q-(t)dt (18)
We set x = a in equation (17) and insert the result in to the right hand side of the inequality in (18) to get
b 1 b b, ,
Ry a-@de < (= +2) [y +8 [y'? e =llq-| (19)
Hence
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1 c
Iy'113 < (5= + ) 113 + oIy I3
Such as in the proof of Theorem 2.1 we assume without loss of generality ||y||, = 1, then
M2(1 — R
ly'I31 - 6) <= +5
' -t 4, ¢
P rewrs Y7 R rewry
Setting § = % we have that

, 2
Iy'llo < J52 + 4llq_| (20)

By inserting (20) in Equation (10) and (11) we get boundaries as shown in (21) and (22) below on the imaginary and
real parts of non-real eigenvalues.

tm Al < 21lg'llyZ+ 46 — g T (llg =l + Vg =2 + QDBE) (1)

And

|ReA| <

2(llg =Ils + /g =1 + @Iy ®)F) [lg'll/2 + 4 — @)l =TIy +2(b
a) (Ilg I, + Tl =2+ Q) y®)I) llg =l llgl.o] (22)
Remark

We note that the boundaries in Theorem 2.2 are an improvement on the boundaries in Theorem 2.1 as long as

1+ 142
> 1.
2

3. Comparing the bounds
In this section, by approximating the imaginary eigenvalues of a special indefinite Sturm-Liouville problem and then
comparing their volume with our result, we satisfy the above remark.

llg Il =

Example:
=y" +q(x)y = Ap(x)y
y-D)=y'(1)=0 where x € [-1,1] .

y(x) = ¢ eVAP—X 4 ¢,eiWAP—ax
y(1) = ¢;eVP~q 4 c,e"WAP—a
And if ¢; = ¢, then y(1) = 2cos+/Ap — q
And since |[cos x| < 1 then |[y(1)]| < 2
Lx2 42y if x € (—¢£,0)

Let g(x) = 521 ¢

—S,—sz +§x if x€(0,8)
1 if x€ (1)
and pc) = {71 S
Forx € (—1,1)
f;—zx-k? if x € (=¢£,0)
g't) = —§x+§ if x€(0,8)
0 otherwise

1
2 8

Clearly, llglle» = 1, llg =lls = y/2laol . llg'll> = (/19" PPdx)* = |3

We are comparing the bounds of imaginary and real part of eigenvalue 4 in Theorem 2.1 and Theorem 2.2.
By theorem 2.1

2
m 2l <2vb=a llg'll, (g —Il; +/llg =1z + QBB
And

2
2
|Rea| < ;(nq “ll + Jllg -1z + Q(b)ly(b)F) (Vb =a lg'llz +2(6 = @)ligllsllg =1l
And by theorem 2.2
V2
ml < 22 (Il =l +lla =T+ e OF)
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2( 4
<o _ _ _12 2
IRe 4] < e<¢3—;+ 4llq ||1) (nq I + Jlla =112 + )y ) )
Let € = 1, then according to the given data, we have
1

Al =——

R

Where |A| is the length between of the sub-interval (—1,1) on g(x)p(x) < 1. In this case let |A| = 2¢ so that ¢ <

1 .
——. For the particular case when
64|qol
1

- _ 2 =
qo = —6m*,we have that & < oan? thus we can set ¢

eigenvalue by theorem 1 and theorem 2 respectively we get
[Im 1| < 180575.1406,
|Re 1] < 235864.7599,
[Im A| < 47793.16334,
|[Re 1| < 103082.7827.

1

Py So the bounds of real and imaginary part of

Conclusion
In conclusion, we realized that the real and imaginary parts of the complex eigenvalue of an indefinite Sturm-
Liouville problem with Cauchy boundary conditions on the finite interval [a,b].
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