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Abstract 

   Many papers introduced about the approximation of continuous functions using neural networks. In 

this paper we use neural network to approximate functions in Lp spaces for p < 1. We study the 

approximation for functions defined on the complete real line using neural networks with radial basis 

having constant weight. We also use convolution to approximate functions in Lp spaces for 𝑝 < 1 on a 

compact interval using radial basis function neural networks of constant weights.  
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1. Introduction 

   Many papers (see [1],[2],[3]and[4]) showed that we can consider the multilayered 

neural networks with radial basis function, as a universal approximation of a continuous 

function. Then in [5] the authors proved theorems for the approximation of functions in 

𝐶2 define on [0,1]𝑘 ,𝑘 ∈ 𝑁, using the multilayered neural networks with radial basis 

functions. In [6] Li introduced a result for the simultaneous approximation using neural 

networks with radial basis functions, for a function and all it's derivatives. In[7] we can 

find a numerical approach for the results in [6].         

   The papers above used various weights in neural networks with radial basis, which 

make approximation theorems difficult in applications for engineering and any other 

science field. 

   Now there is a natural question: Can we use a fixed weight in radial basis function 

neural network, in order to have an easy usage for general usage in life? 

   Here let us answer the above question, and approximate any function in 𝐿𝑝spaces 

for 𝑝 < 1, using neural networks with radial basis with constant weight.We also 

construct an approximation for any function belongs to  𝐿𝑝 spaces for 𝑝 < 1 defined on 

a closed and bounded interval using neural networks with radial basis with constant 

weight. We introduce a direct estimation in 𝐿𝑝 spaces for 𝑃 < 1, and we define the 
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convolution of two functions and prove a version of direct theorem by using it .We 

introduce a direct theorem for the approximation using radial basis function defined on 

bounded closed interval subset of the real line R. 

   There are various contributions to knowledge for the neural networks approximation, 

such as geophysics, metrology and graph rendering. In those applications, the data are 

all over sphere, and we need to represent them by a functional model.     

2. Main Results 
2-1 A Jackson Type Theorem 

We can approximate any function in  𝐿𝑝 , 𝑝 < 1 using radial basis function neural 

networks. If we want to make that possible we need some limits on the functions in 𝐿𝑝, 

𝑝 < 1. As we see in our first result. 

Theorem 1. 

If 𝑓 ∈ 𝐿𝑝 , 𝑝 < 1 with lim
|𝑥|→∞

|𝑓(𝑥)| → 0 and 𝜎 be a radial basis function. Then 

there are real  constants ci, θ𝑖 and positive integers 𝑊 𝑎𝑛𝑑 𝑀 with 

‖𝑓 − 𝑁‖𝑝 ≤  𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝, 

where 𝑁(𝑥) =∑𝑐𝑖𝜎(𝑊𝑥 + 𝜃𝑖).

𝑀

𝑖=1

 

Proof. 

By our hypotheses lim
|𝑥|→∞

|𝑓(𝑥)| = 0, ℎ > 0, ∃𝑘 ∈ 𝑍+such that  

‖∆ℎ
𝑚𝑓(𝑥)‖𝐿𝑝(𝐽) ≤ 𝑐(𝑝)𝜔𝑚(𝑓, 𝛿)𝑝(𝐽)         𝑤ℎ𝑒𝑟𝑒|ℎ| < 𝛿  

𝑤ℎ𝑒𝑛 𝐽 = (𝑘,∞) ∪ (−∞,−𝑘) 

‖∆ℎ
𝑚𝑓‖𝐿𝑝(𝐽) ≤ 𝑐(𝑝)𝜔𝑚(𝑓, 𝛿)𝐿𝑝(𝐽)  

Let            𝑀 = [
1

𝜔𝑚(𝑓,𝛿)𝑝
] > 𝑘  𝑎𝑛𝑑 𝑀 > [

1

𝛿
], 

Where [𝑦]𝑖𝑠(𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑦) + 1. 

Let 𝐼 =
[−𝑀,𝑀]. If we devided I in to 2𝑀2 equidistance points , the distance between any two  

points equal to 1 M⁄  

  𝐼1=[𝑥𝑜 , 𝑥1], 𝐼2 = [𝑥1, 𝑥2],⋯ 𝐼2𝑀2 = [𝑥2𝑀2−1, 𝑥2𝑀2] 

Let                                          𝜃𝑖 =
𝑥𝑖+𝑥𝑖+1

2
 , 𝑖 = 0,1,2,⋯ ,2𝑀2 − 1 

Since 𝜎 is radial basis function, we can find 𝐿 > 0, such that ‖𝜎‖𝐿𝑝(𝐽) ≤

𝑐(𝑝)𝜔𝑚(𝑓, 𝛿)𝐿𝑝(𝐽) 

For 𝐼 = (𝐿,∞) ∪ (−∞, 𝐿).Define 𝑊 ∈ 𝑍+, 𝑤𝑖𝑡ℎ 𝑊 𝜔𝑚(𝑓, 𝛿)𝐿𝑝(𝐼)⁄ > 𝐿. 

So we can define the following neural network  
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𝑁(𝑥) = ∑ ∆ℎ
𝑚𝑓(𝑥𝑖)

2𝑀2−1

𝑖=0

− 𝜎(𝑊(𝑥 − 𝜃𝑖)). 

   

Then on 𝐶 = (−∞,−𝑀) ∪ (𝑀,∞)       

‖𝑓 − 𝑁‖𝐿𝑝(𝐶) = ‖𝑓‖𝐿𝑝(𝐶) + ‖𝑁‖𝐿𝑝(𝐶) 

                          ≤ 𝑐(𝑝)𝜔𝑚(𝑓, 𝛿)𝐿𝑝(𝐶) + 𝑐(𝑝) ∑ ‖∆ℎ
𝑚𝑓(𝑥𝑖)‖𝐿𝑝(𝐶) + ‖𝜎‖𝐿𝑝(𝐶)

2𝑀2−1

𝑖=0

 

                               ≤ 𝑐(𝑝)𝜔𝑚(𝑓, 𝛿)𝐿𝑝(𝐶) 

From now on 𝑐(𝑝) means a positive constant depends on 𝑝  only and may vary from 

one step to another.         

Then on 𝐶 = [−𝑀,𝑀], there is 𝑗 = 0,1,2,⋯ ,2𝑀2 − 1 ,  with 𝐶 = ⋃ 𝐼𝑖
2𝑀2−1
𝑖=1  

‖𝑓 − 𝑁‖𝐿𝑝(𝐶) = ‖𝑓 − 𝑁‖𝐿𝑝(⋃ 𝐼𝑖
2𝑀2−1
𝑖=1 )

 

                          ≤ 𝑐(𝑝) ‖𝑓 −∑∆ℎ
𝑚𝑓(𝑥𝑖)𝜎(𝑊(𝑥 − 𝜃𝑖))

𝑗−1

𝑖=0

‖

𝐿𝑝(⋃ 𝐼𝑖
2𝑀2−1
𝑖=1 )

 

                             + ‖ ∑ ∆ℎ
𝑚𝑓(𝑥𝑖)𝜎(𝑊(𝑥 − 𝜃𝑖))

2𝑀2−1

𝑖=𝑗+1

‖

𝐿𝑝(⋃ 𝐼𝑖
2𝑀2−1
𝑖=1 )

 

                         ≤ 𝐶(𝑝) 𝜔𝑚(𝑓, 𝛿)𝐿𝑝(𝐶). 

This completes the proof. 

 

2-2 Convolution and its Approximation 

Let us recall the definition of the convolution of two functions 𝑓1, 𝑓2. 

     (𝑓1 ∗ 𝑓2)(𝑧) = ∫ 𝑓1(𝑦)𝑓2(𝑧 − 𝑦)𝑑𝑦𝑅
. 

Where 𝑧 is a real. Also consider the map 

𝐹𝑘(𝑥) = {𝑑∆ℎ
𝑘(𝑓(𝑥))𝑒

− 1

1−𝑥2  
   
|𝑥| < 1

     0                            |𝑥| ≥ 1
 

 𝑑 𝑖𝑠 a constant that make ∫ 𝐹𝑘𝑅
 equal to one. It is clear 𝐹𝑘(𝑥) ∈ 𝐿𝑃

0 (𝑅) ,then we use 

the definition of convolution to introduce a version of direct theorem.  

Now let us define the space 𝐿𝑃
0 (𝑅) = 𝐿𝑃 (𝑅) ∩ {𝑓: 𝑅 → 𝑅 𝑠𝑖𝑡 lim

|𝑥|→0
|𝑓(𝑥)| = 0} , we 

have the following result.  
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Theorem2. 

𝐼𝑓 𝑓 ∈  𝐿𝑃
0 (𝑅), then  ‖((𝐹𝐾 ∗ 𝑓) − 𝑓‖𝑝 ≤  𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝    

Proof. 

              ‖((𝐹𝐾 ∗ 𝑓) − 𝑓‖𝑝 = ‖∫ 𝐹𝐾(𝑦)𝑓(𝑥 − 𝑦)𝑑𝑦 − ∫ 𝐹𝐾(𝑦)𝑓(𝑥)𝑑𝑦
𝑅𝑅

‖
𝑝

 

                                            = ‖∫ 𝐹𝐾(𝑦)𝑓(𝑥 − 𝑦)𝑑𝑦 + ∫ 𝐹𝐾(𝑦)𝑓(𝑥 − 𝑦)𝑑𝑦 − ∫ 𝐹𝐾(𝑦)𝑓(𝑥)𝑑𝑦
𝑅|𝑦|>1|𝑦|<1

‖
𝑝

 

                          ≤ (∫ (∫ |∆ℎ
𝑘𝑓(𝑦)𝑒

− 1

1−𝑦2𝑓(𝑥 − 𝑦)| 𝑑𝑦 + ∫ |𝐹𝐾(𝑦)𝑓(𝑥 − 𝑦)|𝑑𝑦|𝑦|>1
+             

|𝑦|<1𝑅
 

∫|𝐹𝐾(𝑦)||𝑓(𝑥)|𝑑𝑦)
𝑝

𝑅

𝑑𝑥 

                         ≤   𝑐(𝑝) (∫ (∫ |∆ℎ
𝑘𝑓(𝑦)|𝑑𝑦 + 0 + (∫ (∫ |∆ℎ

𝑘𝑓(𝑦)|)𝑑𝑦)
|𝑦|<1|𝑦|<1|𝑦|<1|𝑦|<1

)
𝑝

𝑑𝑥                  

                           ≤ 𝑐(𝑝) (∫ |∆ℎ
𝑘𝑓(𝑦)|

𝑝

𝑅

𝑑𝑥)

1 𝑝⁄

 

                           ≤ 𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝 

The proof is complete . 
 

 

2-3 Approximation By Using Radial Basis Function In 𝑳𝒑 Spaces For  𝒑 <

𝟏 With A Fixed Weight 

In this section we introduce a result by using radial basis function neural networks 

with fixed weight. as we see in the following theorem . 

 

Theorem3. 

Let 𝑓 ∈ 𝐿𝑃
0 ([𝑎1, 𝑎2] ), then If  𝜎 is a measurable radial basis function on R then  we can 

find real constants ciand θi and psitive integer 𝑊 𝑎𝑛𝑑 𝑀 with 

‖𝑓 − 𝑁‖𝑝 ≤  𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝 

Proof. 

Consider the real function: 

𝑓(𝑥) =

{
 

 
          𝑓(𝑎1)𝑥 + (𝑎1 − 1)𝑓(𝑎1)                    𝑖𝑓𝑥 ∈ [𝑎1 − 1, 𝑎1]   

𝑓(𝑥),                                                       𝑖𝑓 𝑥 ∈ [𝑎1, 𝑎2]

−𝑓(𝑎2)𝑥 + (𝑎2 + 1)𝑓(𝑎2) ,              𝑖𝑓 𝑥 ∈ [𝑎2, 𝑎2 + 1]

                  0                                       𝑖𝑓 𝑥 ∈ (−∞, 𝑎1 − 1] ∪ [𝑎2 + 1,∞)

 

Using theorem 2 to get  ‖𝐹𝑘 ∗ 𝑓 − 𝑓‖𝑝 ≤ 𝑐
(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝 ,so 

    ‖𝐹𝑘 ∗ 𝑓 − 𝑓‖𝑝 ≤ 𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝  on [𝑎1, 𝑎2]                     ( 2 − 1) 

 Since  ∫ 𝐹𝑘(𝑥 − 𝑦)𝑓(𝑦)𝑅
 𝑑𝑦  is finite for any 𝑘 in ℤ+. And there exists a Riemann 

sum for the approximation of any convolution. 

If k is a positive integer we can find 𝑀𝑘 in ℤ+. And 𝑧𝑖 , 𝐶𝑖  for 𝑖 = 1,2,⋯ ,𝑀𝑘   satisfy 
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‖(𝐹𝑘 ∗ 𝑓)(𝑥) −∑𝐶𝑖𝐹𝑘(𝑥 − 𝑧𝑖)𝑓(𝑧𝑖)

𝑀𝑘

𝑖=1

‖

𝑝

≤ 𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝                            (2 − 2) 

Using theorem 1 there exist real constants 𝛼𝑗,𝑘, 𝛽𝑗,𝑘  and  𝐾 ∈ ℤ
+ satisfy  

‖𝐹𝑘(𝑥 − 𝑧𝑖) −∑𝛽𝑗,𝑘𝜎(𝑘(𝑥 − 𝑧𝑖)) + 𝛼𝑗,𝑘
𝑗,𝑘

‖

𝑝

≤ 𝑐(𝑝)𝜔𝑘(𝐹𝑘, 𝛿)𝑝                        (2 − 3)  

 

Using eq. 2-1 to choose k ∈ ℤ+ that satisfy 

‖𝑓(𝑥) − (𝐹𝑘 ∗ 𝑓)(𝑥)‖𝑝 ≤ 𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝                                                                (2 − 4) 

From eq. (2-2), (2-3) and (2-4) we obtain  

‖𝑓(𝑥) −∑𝐶𝑖𝑓
~(𝑧𝑖)

𝑀𝑘

𝑖=1

∑𝛽𝑗,𝑘𝜎(𝑘(𝑥 − 𝑧𝑖) + 𝛼𝑗,𝑘)

𝑗,𝑘

‖

𝑝

 

≤ ‖𝑓(𝑥) − (𝐹𝑘 ∗ 𝑓)(𝑥)‖𝑝 + ‖(𝐹𝑘 ∗ 𝑓)(𝑥) −∑𝐶𝑖𝐹𝑘(𝑥 − 𝑧𝑖)𝑓
~(𝑧𝑖)

𝑀𝑘

𝑖=1

‖

𝑝

 

+‖∑𝐶𝑖𝐹𝑘(𝑥 − 𝑧𝑖)𝑓
~(𝑧𝑖) −∑𝐶𝑖𝑓

~(𝑧𝑖)

𝑀𝑘

𝑖=1

𝑀𝑘

𝑖=1

∑𝛽𝑗,𝑘𝜎(𝑘(𝑥 − 𝑧𝑖) + 𝛼𝑗,𝑘 )

𝑗,𝑘

‖

𝑝

 

  ≤ 𝑐(𝑝)𝜔𝑘(𝑓, 𝛿)𝑝. 

This completes the proof. 

 

3. Conclusion  

 There are main two problems in the field of studying approximation using neural 

networks, these problems are density and complexity. In our work here we consider the 

density problem. We proved a direct theorem for any function in 𝐿𝑝 spaces for 𝑝 < 1, 

satisfying lim
|𝑥|→∞

|𝑓(𝑥)| → 0, using neural networks with radial basis function. What 

distinguishes our work is the ability of neural networks approximation in approximation 

of functions. These thoughts lead to thoughts in the studying complexity approximation 

problem using fixed weight neural networks, as a future work.     
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 لخلاصةا
تناولت العديد من البحوث تقريب الدوال المستمرة باستخدام الشبكات العصبية. في هذا البحث استخدمنا الشبكات العصبية  

𝑝 عندما Lpلتقريب الدوال في الفضاء  < الدوال المعرفة على الخط الحقيقي الكامل باستخدام الشبكات العصبية  . اذ قمنا بدراسة تقريب1
𝑝 عندما Lpفي الفضاء الالتفاف لتقريب الدوال  كما استخدمنا التي لها وزن ثابت. < معرفة على فترة مرصوصة باستخدام الشبكات  1

      العصبية التي لها اوزان ثابتة.   

 ، التقريب المقيد، الشبكات العصبية، الالتفاف.  𝐿𝑝الفضاء  :ةلادلالكلمات ا
 


