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Abstract

Many papers introduced about the approximation of continuous functions using neural networks. In
this paper we use neural network to approximate functions in L, spaces for p < 1. We study the
approximation for functions defined on the complete real line using neural networks with radial basis
having constant weight. We also use convolution to approximate functions in Ly, spaces forp < 1ona
compact interval using radial basis function neural networks of constant weights.
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1. Introduction

Many papers (see [1],[2],[3]and[4]) showed that we can consider the multilayered
neural networks with radial basis function, as a universal approximation of a continuous
function. Then in [5] the authors proved theorems for the approximation of functions in
C? define on [0,1]% ,k € N, using the multilayered neural networks with radial basis
functions. In [6] Li introduced a result for the simultaneous approximation using neural
networks with radial basis functions, for a function and all it's derivatives. In[7] we can
find a numerical approach for the results in [6].

The papers above used various weights in neural networks with radial basis, which
make approximation theorems difficult in applications for engineering and any other
science field.

Now there is a natural question: Can we use a fixed weight in radial basis function
neural network, in order to have an easy usage for general usage in life?

Here let us answer the above question, and approximate any function in L,spaces
for p < 1, using neural networks with radial basis with constant weight.We also
construct an approximation for any function belongs to L,, spaces for p < 1 defined on
a closed and bounded interval using neural networks with radial basis with constant
weight. We introduce a direct estimation in L, spaces for P < 1, and we define the
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convolution of two functions and prove a version of direct theorem by using it .We
introduce a direct theorem for the approximation using radial basis function defined on
bounded closed interval subset of the real line R.

There are various contributions to knowledge for the neural networks approximation,
such as geophysics, metrology and graph rendering. In those applications, the data are
all over sphere, and we need to represent them by a functional model.

2. Main Results
2-1 A Jackson Type Theorem

We can approximate any function in L, , p < 1 using radial basis function neural
networks. If we want to make that possible we need some limits on the functions in L,
p < 1. As we see in our first result.

Theorem 1.

If f€L,,p<1with Illim |f(x)] = 0 and o be a radial basis function. Then
X|—>00

there are real constants c;, 6; and positive integers W and M with
”f - N”p < C(p)wk(f' 6)1)!
M

where N(x) = z cio(Wx + 0)).

i=1

Proof.
By our hypotheses |llim |f(x)] = 0,h > 0,3k € Z*such that
X|—00

AR f COllpy < c@)wm (f,8)pg)y where|h| <&
when | = (k, ) U (—oo, —k)

1A% flloy S c@)0m(f, 8)ip(y

1 1
Let M = [wm(f,a)p] >k and M > [E]'

Where [ylis(the integer part of y) + 1.

Let] =
[—M, M].1f we devided I in to 2M? equidistance points , the distance between any two
points equal to 1/M
Li=[x0, %11, Iz = [x1, %2], -+ Iapz = [Xom2—1, Xop2]
Let g, =Xt ;=012 2M2—1

2

Since o is radial basis function, we can find L > 0, such that [|o ]|,y <

c(@)wm(f, 8)p(
For I = (L, ) U (—,L).Define W € Z*,with W /w,,(f, 8) 1p) > L.

So we can define the following neural network
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2M?-1

N = ) ARf(r) - o(W(x - 6)

i=0

Thenon C = (=, —M) U (M, )

If = Nllipey = f ooy + INILpco
2M?-1

< c(@)0n(f, O)ipcy + () 2 AR Ccdllipcey + lollpcey
i=0

< C(p)wm(f: 6)Lp(C)

From now on c¢(p) means a positive constant depends on p only and may vary from
one step to another.

Thenon C = [-M, M], thereisj = 0,1,2,--,2M? — 1, with C = U241,

lf - N”Lp(C) =|f - N”Lp(Ulgﬂz_lli)
j-1
<c®) ||f = D arreo(Wex —6)
i=0 (UM’ 1)
| D arree(wee - o)

i=j+1 2_
J LpUZMTt1)

< CP) wn(f, O ip(co)-

This completes the proof.

2-2 Convolution and its Approximation

Let us recall the definition of the convolution of two functions f;, f5.

(fix (@) = [, Lfa(z—y)dy.

Where z is a real. Also consider the map

Fe(x) = {dAZ(f(x))e_ﬁ x| <1
0 x| =1

d is a constant that make fR F,, equal to one. It is clear F,(x) € L%(R) ,then we use
the definition of convolution to introduce a version of direct theorem.

Now let us define the space LY(R) = Lp (R) N {f:R - R sit |lilmolf(x)l = 0} , we
X|—
have the following result.
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Theorem2.
If f € Ly(R), then [|((Fg * f) = fll, < c()wr(f,8),

Proof.

I(Fe * ) = fll, =

| Feore=ydy - [ For@ay
R R

p

f| L FOY Gy |

lyI>1

Fe)f (x —y)dy — L FeOf (X)dyH
14

BEFOIe TPF G = )| dy + o IO G =9Iy +

< (r Uyt

f FeOIIF@)ldy)P dx

R

< @ ([ Uy MOy + 0+ (A 0O Ddy)) dx

1/p
<@ ( | IAiif(y)I”dx)
R

< c(Pw(f,8)p
The proof is complete .

2-3 Approximation By Using Radial Basis Function In L, Spaces For p <

1 With A Fixed Weight
In this section we introduce a result by using radial basis function neural networks
with fixed weight. as we see in the following theorem .

Theorem3.
Let f € L%([ay, a,] ), then If o is a measurable radial basis function on R then we can
find real constants c;and 6; and psitive integer W and M with

If = Nll, < c(@)wr(f,6)y
Proof.

Consider the real function:

fla)x + (a; — Df(ay) ifx €la; —1,a4]
]Z-(x) — { f(x); lfx € [alraZ]
—f(azx)x + (az + Df(a,), if x € [ay,a; + 1]
k 0 if x € (—o,a; —1] U [a, + 1,0)

Using theorem 2 to get ||Fy * f —f“p < c@wi(f, 8)p 50
1Fc* = Fll,, < c)eoi(f,6), on[ay, ;] (2-1)

Since fR F.(x —y)f(y) dy is finite for any k in Z*. And there exists a Riemann
sum for the approximation of any convolution.

If k is a positive integer we can find M, inZ*. And z;,C; fori = 1,2,---, M, satisfy
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My
(Fie * ) — Z CiF(x — z)f (z)

i=1

< c(P)wi(f, 8)p (2-2)

p

Using theorem 1 there exist real constants ; , 8 x and K € Z™ satisfy

< c(P)wi(Fy, 6)y (2-3)

p

FeGe=2) = ) frao(k(x = 7)) + a
J.k

Using eg. 2-1 to choose k € Z™ that satisfy

If () = (Fie * Hlp < c(@lwi(f, 8)y (2-4)
From eq. (2-2), (2-3) and (2-4) we obtain

F6) =D Cf @) ) Biaok(x =7 + @)
i=1 jik

P
M

< |If(x) = (Fy = f)(x)”p + || (Fie * ) (x) — Z CiF(x — z)f ™ (2)
i=1

p

M M

Z CiF(x —z)f " (z) — Z Cif~(z) Z Bixo(k(x —z) + ajy )
im1 im1 Tk

+

P
< c(P)wi(f, 8)p-

This completes the proof.

3. Conclusion

There are main two problems in the field of studying approximation using neural
networks, these problems are density and complexity. In our work here we consider the
density problem. We proved a direct theorem for any function in L,, spaces for p < 1,
satisfying |,1|iinoo|f(x)| — 0, using neural networks with radial basis function. What

distinguishes our work is the ability of neural networks approximation in approximation
of functions. These thoughts lead to thoughts in the studying complexity approximation
problem using fixed weight neural networks, as a future work.
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