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Abstract

In this work, we present Laplace transform with series Adomian decomposition and modify Adomian
decomposition methods for the first time to solve linear Volterra integro-differential equations of the
fractional order in Caputo sense with constant multi-time Retarded delay. This method is primarily based on
the elegant mixture of Laplace transform method, series expansion method and Adomian polynomial with
modifications. The proposed technique will transform the multi-term delay integro-fractional differential
equations into some iterative algebraic equations, and it is capable of reducing computational analytical
works where the kernel of difference and simple degenerate types. Analytical examples are presented to
illustrate the efficiency and accuracy of the proposed methods.

Keywords: Caputo fractional derivative, Delay differential equations, Integro-differential equation, Laplace
transform, Adomian decomposition method and Modify Adomian decomposition method.

1. Introduction

The idea of this work is to solve linear Volterra Integro-Fractional Differential
Equations (VIFDE’s) in Caputo sense with constant multi-time Retarded Delay (RD) in
the general form:

n-1

CDEu(E) + Z P,(t) D u(t) + Py(O)u(t — 1)

i=1

=f(t)+4 Zfﬂcj(t,x)u(x—rj)dx, te[0,b] ..(1)
=10

J=1
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Fora, > a,_1 > ap_y > a,_3 > -+ > a; > ay, = 0, with initial conditions which are
given: u®(0) = uy; k=0,1,2,..,u—1, (u=[a,]) and u —th historical continuity
differentiable  functions u(t) = @(t) fort € [@,0], where a= —max{r, T j =
1,2, m} Connected, where u(t) is the solution of equation (1) which is the unknown
functionand X; € C(S X R,R), S ={(t,x):0<x <t <b}forall j= 1,2,---,mand
given f,P, € C([0,b],R), for all i=0,1,..,n—1 where u(t) €R, °D/u(t)is
the a;-fractional Caputo-derivative order of won [0,b] and all a; ,€ R* for (i # 0),
Ng—1 < @; < Mg,y Ng, = [a], for all i =1,2,..,n. Furthermore, the quantities 7; €
R* forall j = 1,2,...,m are called the time-lags (delay).

Such equation LVIFDE-RD’s it is relatively a new subject in mathematics so there are
only few of techniques for solving it and the exact analytic solution has not, thus
approximation technique must be used for treating it.

The author Adomian [1], introduced The Adomian decomposition technique (ADM)
which possess great potential in solving different kinds of the linear/nonlinear functional
equation. This method assumes that the unknown function u(t) can be expressed with the
aid of a sum of a limitless number of components u;(t) described by the decomposition
series. Each term of the series is obtained from a polynomial generated by a power series
expansion of an analytical function. Adomian and Rach [2] additionally Wazwaz [3] have
investigated the noise terms phenomena of the self-canceling where the sum of all factors
are vanishing in the limit. In [4], the noise terms are described as the same terms with an
opposite sign that appear within the elements say u,(t) and u,(t) which that exists only
in particular types of non-homogenous equations. Further, it used to be formally justified
that if terms in uy(t) are vanishing by terms in u, (t), even though. u, (t) includes further
terms, then the closing non-canceled terms in u,(t) may additionally represent the exact
solution of the problem.

The main objective of this work is to use the combined Laplace transform-Adomian
decomposition method with noise term phenomenon in solving the higher fractional order
of linear VIDE’s with constant multi-time Retarded delay problem where the kernel of
difference and simple degenerate types.

This paper is prepared as follows: Section 2 presents the definition and some important
property; section 3 solve linear Volterra integro-differential equation of fractional order
with constant multi-time Retarded delay using Laplace-Adomian decomposition method;
our results illustrated throughout examples in section 4. Finally, section 5 includes a
discussion for this method.

2. Basic definitions and some property
In this section, some preliminaries and notations related to fractional calculus and
Laplace operation are given. For more details, see [ 5,6,7,8,9]:

Definition 2.1: A real valued function u defined on [a, b] be in the space Cs[a, b] , §-any
real number, if there exists a real number £ > §, such that u(t) = (t — a)?u.(t), where
u, € C[a, b], and it is said to be in the space C}[a, b] if and only if u™ € Cs[a, b], n-
positive integer number with zero.
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Definition 2.2: Let u € Cs[a, b], § = —1 with any positive arbitrary real number a. Then
the Riemann-Liouville (R-L) fractional integral operator ,Jof order a of a function u, is
defined as:

(£= )
Jiut) = fawu(s‘)dé, a>0

u(t)  whenever a=0

Definition 2.3: Let @« > 0, and m = [a]. the Riemann-Liouville fractional derivative
operator ED&, of order « and u € C™ [a, b] and defined as:

DI'[JI " u(®)], a>0
Rp&u(t) =4 u(t) whenever a =0
u™(t),Ifa = m(e N) and u € C™[a, b]

Definition 2.4: The Caputo fractional derivative operator D& of order « € R* of a
functionu € C™[a,b] and m — 1 < a < m,m € N is defined as:

“*[D*u(t)], a>0
¢pFu(t) =4 u(t) whenever a =0
u™(t),Ifa = m(e N) and u € C™[a, b]
Hence, we have the following properties:

a p-1 — LB . _\B+a-1
Fora = 0and B > 0, then ,J#(t — a) [‘(B+a)( a) .

e Foralla >0,5 > 0and u(t) € Csla, b],6 > —1, then:
JEJLUE) = ot JEu) = JF ()

e Rpaa = (;( D" and CDEA = 0 ; A is any constant; (a = 0,a & N)

o aDfu(t) = DZ"aJ “u(t) # JIDIu(t) = Dfut) ;m = [al.

e Assumethatu € C™[a,b]; a = 0,a & N and m = [a] then {DFu(t) is continuous on
[a, b], and [(DFu(t) Jp=q = O.

e Leta >0,m=[aland u € C™|a, b], then, the relation between the Caputo derivative
and Riemann-Liouville (R-L) integral are formed:

DAJEUD] = u(®) 5 as<t<bh i JE EDAU] = ul®) ~ TP D o -
a)k
e (DXu(t) = ﬁD{?‘[u(t) — T [1; a]], (m—1<a<m)and T,,_,[u; a] denotes the
Taylor polynomial of degree m — 1 for the function u, centered at a.
Leta > 0;m = [a] and for u(t) = (t — a)? for some B > 0. Then:
0 if B€{0,1,2,:-,m—1}
¢Dfu(t) =4 T(BE+1) (t — a)f-e ifBENand B =m
r+1—-a) orB¢&€Nandp >m-—1

Form the thought of the fractional derivative: The Caputo's definition is a modification
of the Riemann-Liouville (R-L) definition and has the benefit of dealing properly with the
initial value problem so we undertake Caputo’s definition in this papers.

Definition (2.5): [10, 11] The Laplace transforms of a function u(t) of real variable t €
R™, denoted by U(s), is defined by the equation
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o

U(s) = L{u(t); s} = f e=stu(t) dt 2)

0
and its inverse is given for te€ R* by the formula, symbolically written as:
L7H{U(s);t} = u(d).

In references [9,10,12,13,14] and [6,8] respectively can be founding the proves of all
lemmas (1-4) and lemma (5-i, 5-ii), about the Laplace transform with several properties
such that important for our work.

Lemma (1): The Laplace transform is related to the transform of the n — th derivative of
a function, where U(s) is a Laplace of u(t):

n n—1
L{d d’l:flt)} =3 nU(S) _ kz;sn—k—l u(k) (0)
n-1
=s"U(s)— Y s™ umk-1(() (3

Lemma (2): The Laplace transform of the convolution of two functions is the product of
their Laplace transforms. Thus U(s) and V(s) are the Laplace transforms of u(t) and
v(t) respectively, then:

t

L{(uxv)()} =L {f u(t — x)v(x)dx} =U(s)V(s) .. (4)
0

especially:

t 1
L‘{JO u(x)dx} =3 U(s) ..(5)

Lemma (3): If U(s) is the Laplace of u(t) and t™ is a power function of order n € Z*,
then:

dm dm
Lm0} = (D" o Lu®) = (D" —= V() - (6)
Lemma (4): let U(s) be the Laplace of u(t) then:

L{Jottu(x)dx} = —% e U(s) )\L

t 1d
L{foxu(x)dx} =7 U(s) J
Lemma (5):

0] The Laplace transform of the R-L Fractional integral for order a €
R*,JE u(t) = ofF u(t), using the convolution property, gives:
ta—l ta—l
[24 — i — -
LYFu()} = L{F(a) * u(t)} = L{F(a)} L{iu(®)}=s"U(s) ..(8)
(i) The Laplace transform of Caputo Fractional of order @ (m — 1 < a < m) and
m = [a], §DF u(t) = “DF u(t), can be obtained as follows:

- (7)
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L{DEu®)} = LY *DIu()} = s~ 9 L{u™ (1)}

m-—1
— S—(m—a) s™m U(S) _ gm—k-1 u(k) (0)]
=s*U(s)
m-—1
- z s@k=1 4,00 (0) ..(9)

k=0
Laplace transform of a constant delay function is explained in the following important
new-lemma:
Lemma (6): Let u(t) be a continuous differentiable function on a closed bounded
interval [0,b], b € R* and let T be a constant delay such that:

u(t) = @(t), for —t<t<0 ..(10)
Then the Laplace transform of a 7 — delay function is given by:
L{u(t—1)} =" [U(s) + Q(s,7)] . (11)
where
Q) = [ e~ p(t)dt
and

L{u(t) } = U(s).

If the historical function ¢(t) is defined by power function t", (n € Z*) we have:
n

n-p |
Llu(t— 1)} = e~ U(s) + 2(—1)11-29 p! (Z) e .(12)
p=

Proof:
By taking Laplace transform of t-delay function u(t — 1), as in definition (1), and
applying the change of variable by t — 7 = x we obtain:

L{u(t—1)} = fooe‘“u(t —17)dt = e~ fooe‘sxu(x)dx
0 -T

+ J:o le‘s" u(x)dx ..(13)

Use by part integral method for solving first integral in (13) after instead u(x) by historical
function (H.F.) ¢ (x), which is defined x™,n € Z* ,we get:

0

Q(s,7) = f_oe‘sxw(x)dx = J e ¥ x™dx

-T
ST 3 n—p | nyt"?
=e Z(—l) p (p) Sp+1
p=0
n!

.. (14)
Sn+1
And the second integral part in (13) is the Laplace transform of u(x), thus
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f e *u(x)dx = U(s) ..(15)
0
Substitution equations (14) and (15) into equation (13) we obtain:

n

L{ut =} = e UE) + Y (~1)" P pl (") v
p=0

—ST

p) sP*1 T ogn+l e

which completes the proof. Note that, in general, for historical function (H.F.) which is

defined:
R

p(x) = z ax"r ; {RE€Z* ,n, €Z* ,a, €Z"} ..(16)
r=1

Then the formula (12) becomes:

.
TP n,l

R Ny
n
Llue =0} = e T UE) 4 ap | Y (-mrpt () S - e
r=1 p=0

3. Analysis Technique of Method

In this section we try to find general solution form of linear VIFDE’s with multi-time
RD by applying the Laplace transform with aid of the Adomain decomposition techniques
for two different types of kernel: difference and simple degenerate kernel.

3.1 Apply the LADM for Solving Linear VIFDE-RD’s of Difference Kernel

Firstly, consider the VIFDE-RD’s of difference kernel type X (t,x) = X (t — x) for
all j = 1,2, ..., m. Moreover, take P;(t) as a power function, say C;t%i ,C; € R and #; be
any nonnegative integer numbers for all i. Apply Laplace transform on both sides of
equation (1):

n-1
LD u(e)} + Z L{P.DSDE (D)} + L{Py () u(t — 1)}
= L{f®)

t
+Z/LC{JOJCJ- (t—x) u(x—rj)dx} - (17)
j=1

First, using Caputo fractional differentiation property of Laplace transform (9) with initial
conditions w;, = u®(0), where m,, — 1 < a,, < m,,, we obtain
me, —1
£{DEmu()} = 5% U(s) — Z san—k=1 3 ..(18)
k=0
Second, forall i =1,2,....n — 1, using equation (6) and then applying equation (9), where
¢; is the order of P;(¢t) foreachi,and m, . —1 <an_; <m, . Weget
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L{P;(t) ‘D" u(t)}

dti
= C; (-1 o7 (s*-i U(s))

;. Mansil
dti
G (Do Z [son-ik1 o] .. (19)
k=0

Third, using equation (6) and then applying the Lemma (6), using 11 and 12 respectively,
we obtain:

d?o
L{IPy(Ou(t — 1)} = Co(—1)%0 R [e=s*(U(s) + Q(s,7))] ..(20,4)

As a special case, where ¢, is the order of P,(t)and g is the order of historical
polynomial function, ¢(t) is t9,q € Z*,we have

L{Py(t) u(t — 1)}

dto dfo 1 q-p
= Co(=1)fo == [e™TU ()] + Co(~ Do —— [Z(—l)q-p P ()5
p=0

dsto ds gp+1
4o |
— €y (=1t 4 st (20,B)
0 dsto |sat1 A
Fourth, using the definition of Laplace transformation, we get:

LI ()} = F(s) .. (21)

Atlast, forall j = 1,2,...m we apply equation (4) with Lemma (6), 11 and 12 respectively
to obtain:

L {fotﬂq (t—x) u(x — Tj)dx} =Ki(s) el [(U(s) + Q(s, Tj))] ..(22,4)

As a special case, where the historical function ¢(t) is t?,q € Z*,we have:

L {ftS‘C] (t—x) u(x — Tj)dx}
0

=35)|e=muGs) + ) (-0t (1) Lo
p=0
!
L sy ..(22,B)

Cga+1

Finally, substitution the equations (18,19,20: 4, 21,22: A) into the equation (17) and after
some simple manipulations, to get the following formula:
m

s%n U(s) = F*(s) + AZ %:(s) e U(s) + W(s, U(s)) ..(23)
=1
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Where
n-1 gt
= I pa— n—i
W(S, U(S)) = - Z Cl(_l) 757 [Sa U(S)]
=1
4o
+ Co(=D ——- [e™TU(s)] . (24)
and
F*(s)
m me, —1
=F(s) + Azj(](s) e~ 5Tj Q(S: Tj) + z sIn—k-1 Uy
J=1 k=0
n—-1 ma’n_i_l
a k-1
[ a— n—-i— "
+ z C;(—1) 757 sa W
=1 k=0
dto
~ G(DP g [T D) ..(25)

If historical function is power function t9,q € Z*, putting the equations
(18,19,20: B, 21,22: B) into equation (17), to obtain the following equations (26) instead
of (25):

F*(s) =F(s) + Ai X;(s) zq:(_nq—p p! (Q> 7,477 ~ q_!e—sr,-
Jj=1 p=0

p spb+1 sa+1
me,—1 n—1 ’ man_l.—l
dti
+ Z snk-1 uk+ZCi(—1)"iH z stn-imk=1 35
k=0 i=1 k=0
q
dfo q\ TP
— 1) —1)4-P pl
Co=D" 757 [Z,( A <p) spH1
p:
q
~ g7 st ...(26)

According to the decomposition method which consists of decomposing the unknown
function u(t) into a sum of components defined by the decomposition series

w(t) = ug () + uy(6) + -+ u (£) + - = Z () .27
r=0

Taking Laplace transform to each components in equation (27) and letting U,(s) =
L{u.(t)}, Vr=0,1,...Thus
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U(s) =Uy(s) + U (s) + -+ U(s)+ = Z U,(s) ..(28)
r=0

After substituting equation (28) with (23) and (24), it leads to the following recursive
relation:

Up(s) = ——=F"(s)

t/)( )
> ..(29)

Ur1(s) =

Wk(s U(s))+/’lZ?C (s) e™*% Uy (s)

for k=0/

l/)()

Wi(s, U) = - ZC( D s, (5)

dto
+ Co(—1)%0 —7s [e=STU,(s)]]| ...(30)

If the historical function is any continuous differentiable function ¢(t) thus F*(s) is
defined in equation (25) and if historical function is power function t%,q € Z* then F*(s)
is take the formula (26), with ¥(s) = st and applying the inverse Laplace transform to
equation (29) and putting in the equation (27) gives u(t) the solution of linear VIFDE-
RD’s of difference kernel.

3.2 Apply the LADM for Solving Linear VIFDE’s of Simple Degenerate Kernel:

Laplace-Adomian decomposition technique can also be used to solve the VIFDE’s with
constant multi-time Retarded delays which the kernels are simple degenerate type, formed

as: K;(t,x) = ¢t kj +d;x ki for all ki ki €Z*andc;,d;€ R forall j=1.2,..,m

Apply Laplace transform on both sides of equation (1):
n-—1
£{EpTmu(t)} + Z L{P.()SDEu(t)} + L{Po (1) u(t — 7))}

=L{f(O)}+ i AL{ Jot [cjtkf1 + djxklz'] u(x — T]-)dx} ..(31D)
j=1

Thus, as a same step in section 3.1 we get same equations (17, 18, 19, 20 (A, B) and 21)
with replacing last equation (22 (A, B)) to the following formulas. Now we apply equation
(7) with Lemma (5), (equations 11 and 12) respectively, and using Leibniz’s formula for
higher derivative of multiplication functions [15], then after some manipulating we obtain
forall j =1,2,...,m
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t
L{f [cjtkll' + djxkfz'] u(x — Tj)dx}
0

} 1 k2—1 2 k%-r
—sT; 2 _
_¢ cj 7! k; lrkl_r +d;T; ki d; ( 1)r+k k] a’
s ! r st/ I 12 —r
r=0 ds”i
1_ 1_,_
k 1 kJ r—1 k_l_r dk}—r—p
r+k 1 _ P+ D ] —
+ CJZ( 1) Jr( > ; (-7, < , )dsk}—f—p u(s)
1 dk =T
216 Z( 1)r+k””'< > =
r)S ds j_r
2
2 d
+d; (_1)"1W qu(S) ..(32)
s

Where
_STjQ(S Tj) ; if the (HF) any continuos differentiable function
Hl(s) =

1)a-» AN q! -stj . ; (t) = 4
( ) Ppspﬂ—me ; if )=

and

(s T]) J “SXp(x)dx

-T;

Finally, substitution the equations (18,19,20: 4, 21,32) into the equation (31) and after
some simple manipulations, we get the following formula:

s U(s) =F*(s) + W(s, U(s))

m
+AZ
j_

k!
. J 1_
e 5% kN kT
| ] ]
Cj r.
S r sT
=1 r=0

+d;7,% | U(s) - (33)

Where
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W(S,U(s))
ki-1 1-r-1
m e~ ST - dk
:/’lz C]z( 1)+ ( >ST Z (- 1)prp< >—ds rr—
ki-1 2 4
ahi i
+|d) Z( )+ ( ) | (V) - ZC( 1l 2 [ U ()]

o

d
— Co(=1)"0 - [e=TU(s)]

If the historical function is any continuous differentiable function ¢(t) ,thus:

F*(s)
=F(s)
+AZ— c Z( 1)”’%' AR AIEN il e=5Q(s,7;)
! s” dSkf dskj ’]
My, — Mme, ;1
dfi
+Z sn=k=1 9 +ZC( 1)*’1 z son-i=k=1 4,
k=0 k=0
dto
= G (=)~ [e7Q(s, D] ..(35)

If the historical function is <p(t) = t9,q € Z* thus:

k
F(s)—F(s)uZ— G Z( 1)”’%'( )Slr;
51

K? Eq ;" 4
_ —ST:
( 1) ( > (_1)q P p' gp+1 - sq+1 e J

Men— n—-1 May,_;

dti
k= i=1 S k=0
q
d[0 q Tq_p
— —1)¢ —1)4—p
CO( 1) Odsgo Z(p)( 1) p' gb+1
p=0
q
~sari® st ...(36)

45
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After substitution equation where (33) and (34) into (28), then the following recursive
relation is:

Up(s) = e )F (s)

Upar(s) = m Wi(s, U(s))uz

=0

o )
l Do ) i +di15 | Up(s) i
|

)

for k=0
(37)
where
Wi (s, U(s))
mo kl_l -—r 1 dk
— e ! r+kj j
—AZ C,Z( 1) r'< > Z (1P < >—ds —
k2_1 dkz'_r n-1 d{)'
+|4d; Z( 1)r+k]TJ < ) dski-T Uk(s)_;a'(_l)[idsﬁ [s%-iU, (s)]
dto
— Co(=D)* - [e ™ Ui (s)] - (38)

If the historical function is any continuous differentiable function ¢(t) then F*(s) is
defined in equation (35) and if historical function is power function t%,q € Z* then F*(s)
is take the formula (36), with ¥ (s) = s** with applying the inverse Laplace transform to
equation (37) and substitution in the equation (27) gives u(t) the solution of linear VIFDE-
RD’s of simple degenerate kernel.

3.3 Apply the Modify LADM for Solving Linear VIFDE-RD’s:

Wazwaz [3] has been developed the Adomian decomposition method and this change
minimizes the step size of calculation with effectiveness if comparing together. To apply
this modification, assume that the function f(t) can be divided into the sum of two parts,
namely f; (t) and f,(t) , therefore, we set

f@® = fi(0) + £2(6) - (39)

In view of (39), we introduce a qualitative change in the formation of the recurrence
relations: (29) of difference kernel and (37) of simple degenerate kernel. To minimize the
step-size of calculations, we identify the zeros component U,(s) by one part of F(s),
namely, F;(s)or F,(s) which is the Laplace transform of f;(t) or f,(t) , respectively.
The other part F(s) can be added to the component U, (s) among the other terms.

For Difference kernel the equations (29 and 30) with equations (25 and 26) the modified
recurrence relations are:
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1
Un(s) = ey ) )
_BE 1 " o () sty
N =5 Yo W"(S'U(S))”;W”e Uo(s) L 0
— 1 w ) N ) —S5Tj k=1
Uies (5) = 7o Wi, U () + JZ () e Uy ()  for ke =

J
Where Y (s) = s%, Wk(s, U(s)) is defined in equation (30) and F;(s) is formed as in
equation (25) or (26) except at the first part F(s), changing it to F; (s) = L{f;(t)} while
F7(s) = L{f(8)}.

For Simple Degenerate kernel the equations (37 and 38) with equations (35 and 36) the
modified recurrence relations are:

Uo(s) = e )F1 (s)
F3(s) 1 2 kjr )
U,(s) = 1;( S+ oy Wels U(s)) +Az Z ) +d;tF [ U(s)

r=0

mo st 1 ki-r
1 e k] T K2
Ups1(s) = m Wk(s, U(s)) + Az Zr! +diti" |U(s) ph =1
j=1

~—

.. (4D

Where Y (s) = s%, Wk(s, U(s)) is defined in equation (38) and F;(s) is formed as in
equation (35 or 36) except at the first part F(s), changing it to F;(s) = L{f;(t)} while
F3(s) = L{f(8)}.

4. Analytic Examples:

Here, some example of Linear VIFDE’s with constant multi-time Retarded delay which
solved by Laplace-Adomian decomposition and Modify Laplace-Adomian decomposition
methods.

Example (1): Consider the Linear VIFDE’s with variable coefficients of constant multi-

time R-D with difference kernel type:
t

ED23u(t) — tu(t — 0.3) = f(t) + f [(t —x)%u(x — 0.5) + 2(t — x)u(x — 0.3)]dx
0

where
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6 1 1 73 511 243 27
f® = F(3 7) 60 20 80 + 600 1000 * 1000

with initial condition u(0) = 0 and historical function ¢(t) = t3.

Since here we have: X, (t,x) = (t —x)? ; X,(t,x) = 2(t — x) with constant time-
delays 7=1,=03,7,=05,7,=0.3 and q =3 . Also we can putting a; =
03; mg, =1; Py(t) =—t; £, =1; Co = —1.So the Laplace transforms of kernels
are given

LW =5 L0} =

Equation (26) yields:

F* (S) — i _ Ee—O.SS _ 26—0.35 _ &e—oss _ ge—oss

s7 s6 s> s4
with y(s) = s%3 , using the first part recursive relation (29) we obtain:
6 12 12 24 1.8

0.5s —0.3s —0.3s

_ 2 % —o05s _ % _-03s_ “F —03s_ 2 —03s
Uo(s)—s4 e e e 54_3e

s73 563 s5:3

for k = 0 and using equation (30), we have:

d
Wo(s,U(s)) = 0.3e7035U,(s) — e‘°'3SE Uo(s)

Applying the second part recursive relation (29) with k = 0, we get:

Uy (s) = 1/;( S| Wols, U(e) + z:zc () €755 Uy(s)

12 12 24 1.8 138
_ -0.5 -03 e—03 e—03 -0.6
_3778 °*+ 63e +—=3 53¢ +—=3 43 S_Se.ee *

22.14 13.2 1.08 123.6 48

-0.6 -08 -0.6 -06 -0.8

T g56 e — 573 e — 4.6 e % = 576 e — 596 e
B e

s8 s10. S

We see that the phenomena of the self-canceling “noise” term, [3,8],

12 _ 12 _ 24 _ 1.8 _ .
+—— 7055, + —— g=03s, +ose 035 and t-se 035 appear in Uy(s) and U,(s),

s73 ) — 563
cancelling this terms from the zeroth Laplace component U,(t), thus Uy(s) = S% and
taking the inverse of Laplace transform of it gives the exact solution u(t) = L™H{U(s)} =
t3 that satisfies with the equation.

Example (2): Consider the Linear VIFDE’s with variable coefficients of constant multi-
time Retarded delays with simple degenerate kernel, (t, x) = (2t + x) and constant
coefficients

CDOBU(E) + 2u(t — 1) = F(£) + f 2t + Dule — 05) dx
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where

11 33
t)=——t12 4+ —t* —4t3 ——t*+12t—6
=1zt *3 gt

with initial condition and historical function: u(0) = 0 and ¢@(t) = —3t?, respectably.

Since here we have only one kernel: ¥, (t,x) = 2t + x that is simple degenerate type
m=1and ki =k? =1; ¢, = 2,d, = 1, with constant time-delays Tt =1, =1, 7, =
0.5 and Py(t) =2 so £4 = 0; Co = 2. Also, since a; = 0.8; m,, = 1 . From equation
(36) we vyield:

-6 66 9 12
* _ -0.5 -0.5 -
Fl)=mmtgemtge ™ —me
with Y (s) = s°%3 , using the first part recursive relation (37) we obtain:
-6 66 9 12
— -0.5 -0.5 -
Up(s) =+ 55¢  +qs¢  ~@s¢

for k = 0 and using equation (38), we have:
2

Wo(s,U(s)) = —Ee_O'SSd—U (s) —2e75Uy(s)
01> s ds? ° 0

By applying the second part recursive relation (29) with k = 0, we get:

1

ki 1
1 e_ST1 k% lel_r 2
U =—Wy(s,U E ! dt{%t|U
1(s) W(s) 0(5 (5)) + S 1 rzOT <r ) ST +aq Ty 0(s)
—66 9 12
— -0.5 -0.5 -
=8¢ — ¢ tgase T

We see that the phenomena of the self-canceling “noise” term, [5,7],
i%e‘o-“;i%e‘o-“ and i;%e‘s appear in Uy(s) and U;(s), Cancelling this
terms from the zeroth Laplace component U,y(t), and taking the inverse of Laplace
transform of it, gives the exact solution wu(t) = L7H{U(s)} = —3t? that satisfies the

equation.

Example (3): Consider the Linear VIFDE’s with variable coefficients of constant multi-
time Retarded delays with difference kernel type:

EDE2u(t) — 3tSD4u(t) + %u(t —0.6)
=f(t)+ f[et_xu(x —0.1) — (t —x)%u(x — 0.7)] dx
0
where:
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2 119 1 7 251 1 2
t) = t0.8_ t2.6 -t _t5__t4-__t3 _t2 —t
f® 3r(1.8) re.6) + 3006 + 90 180 900 + 2 + 5
251
300
With initial condition: u(0) = —1; u'(0) = 0 and initial function: ¢(t) = %tz -1.
Now, from the above problem we have: ;(t,x) =e'™* ; XK,(t,x) =
—(t — x)?

with constant time-lags t=1t,=0.6,7, =0.1,7, =0.7 and P,(t) = —3t; and
Py(t)=1/2 thatis ¢, =1, C;, =-3; ¢, =0, C, =1/2 . Also, since a, =12,
mg, = 2; a; = 0.4, m,, = 1. So the Laplace transform of kernels are formed

1 2
L{F, (D)} = P L{TF, ()} = 3
Applying equation (33) to obtain F*(s) and after some simple manipulations we can form:
2 1.8 5.2 2 4
F* — _ 0.2 _ _ —-0.1s -01s 4 _~ ,—0.7s
(5) 3s18 s sl6 36 353(s—1) ¢ + s(s—1) ¢ + 3s6 €
2 1
. __,—0.7s _ _,—06s _ __ ,-0.6s
54 ° + 353 ¢ 25 °

To apply modify Laplace-Adomian decomposition method for difference kernel type we
first split F*(s) into two parts, namely:

2
Fi(s) = 55— 5"
1.8 52 2 e—O.lS e—O.lS 46_0'75 26_0'75 8_0'65 8_0'65
F3(8) = =~ ——=— + + —~ + —
2(5) sl6 36 353(s—1) s(s—1) 3s6 s4 3s3 2s

with ¥ (s) = s2 using the first part recursive relation (40) we obtain:
1 2 1
Uo() = 7o L) = 35— 5

and from equation (30) yields:

d 1
Wo(s, U(s)) = —3e‘°'45$ Uog(s) — 1.2 s7%0U,(s) — > e~ %557, (s)

Applying the second part recursive relation (40), we get: U;(s) = 0. Using the third part
recursive relation (40), we obtain:

Ur+1(s) =0, forall k > 1
It is obvious that each component of w,,r > 1 is zero. The solution is:

1
u(t) =L HU(s)} = §t2 -1
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Example (4): Consider the Linear VIFDE’s with variable coefficients of constant multi-
time Retarded delays with degenerate kernel, X (t,x) = —5t2 + %x , and variable
coefficients on [0, 1]:

ED2Ou(t) — CD“u(t) +u(t—0.7) = f(t) + f

1
(—St2 + —x) u(x — 3)dx
0 5

where

2 1 5 301 252 7 149

t) =t - ——t* "+t - — "+ — 3 -t +—

f® rQ.4) r.7) 3 20 5 5 100
With initial condition and initial function: u(0) = 1and ¢(t) = 1 + t2, respectively.
Since with constant time-lags T =7, = 0.7,7; = 3 and P;(t) = —% t;and Py(t) =1
thatis £ =1, C; = —; £,=0, Cy = 1. Also, since @, = 0.6, my, = 1; a; = 0.3,
mg, = 1. Furthermore, X (t,x) = —5t* + %x that is simple degenerate type m =

land ki1 =2, k?=1;¢,=-5,d, = % From equation (36) we yield:

2 2.7 444 59.8 118.8
F*(s)=527—s—+s‘°4 035$°3+—e —3s +t—5e w35 4 = e 3s
238.8 200 2 e~ 07
—3S_|__ —3S+_ —07S+
s5 ¢ s6 € s3 ¢ s

To apply MLAD method for simple degenerate kernel type we first split F*(s) into two
parts, namely:

2
Fl*(S) = 5‘2—4 + 5_0'4

. —-2.7 g A44e™ 59.8e7% 118.8e7% 238.8e73°
Fi(8) = 7 =035 + ——+ ———+——F—+—
200 e—3s 26_0'75 e—0.7s
+ +
s s3 S
with ¥ (s) = s%¢ | using the first part recursive relation (41) we obtain:
2
Uy(s) =—=F/(s )— +—
° ¢() !
And equation (38) yields:
015 o7 10e73%  s%3  29.8¢73]
Wy —e ']Uo(s)+ - U
58_35
| ]m

Applying the second part recursive relation (40), we get: U;(s) = 0. Using the third part
recursive relation (41), we obtain:

Uk+1(s) =0, forall k > 1
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It is obvious that each component of w,,r > 1 is zero. The solution is:
u(t) = L7HU(s)} =1+ ¢2

4. Discussion
In this paper, through the Laplace-Adomian decomposition (LAD) and modify Laplace-
Adomian decomposition (MLAD) methods for solving linear Volterra integro-fractional
differential equations of constant multi-time Retarded-delay type with variable coefficients
has been successfully applied to finding the approximate solution. The results pointed the
following:
1. In general, this technique in finding analytical solutions for this wide classes of
linear VIFDE’s-RD which was improved provides good results and effectiveness.
2. The Laplace-Adomian  decomposition and modify Laplace-Adomian
decomposition methods were applied for difference kernel and simple degenerate
kernel in general cases and MLAD method provides more realistic series solutions
that converge very rapidly than LAD method.
3. Sometimes the process of finding Laplace-Adomian decomposition method is not
easy, so we use the Modifications.
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