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Abstract
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1-Introduction

Chaotic dynamics generally refers to so complicated and seemingly random

long term behavior exhibited in dynamical systems that keep simple, straightforward,
deterministic laws . This type of dynamics can be seen in dynamical systems as
various as electrical circuits, fluid dynamics, oscillating chemical reactions, and
motion of planetary bodies .
The smale horseshoe map F is diffeomorphism defined on a square T in the plane .
The image of F(T) is bound to form a horseshoe like shape [1]. From the axioms that
map which are topologically conjugate are totally equivalent in terms of their
dynamics . Particularly, the horseshoe map is topologically conjugate to the shift map
o . Hence the shift map is an exact model for the horseshoe map .

Let X be a compact metric space with no isolated point, :X — X beamap . In
[2], Dzul-kifli and Good showed that the set of points with prime period at least n it is
dense for each n if H is Devaney chaotic. In [3] Baloush and Dzul-kifli introduced
six various one-step shift of finite type which have totally different dynamics
demeanor and clear up the dynamics of each space . [4] showed that Locally
Everywhere Onto implies many other chaos properties such as mixing , totally
transitive ,and blending.

2. Preliminaries
If H:X — X be a map on compact metric space with no isolated point, let p €

X then 7 (p) = the first iterate of p for 7. More generally ,if n is any an integer , and
ay is the n-th iterate of p for H , then H (a,) is the (n + 1) st iterate of p for H'. The
orbit of p it is the set of points p, % (p), H2(p), ... , and is symbolize by orb(p) =
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{H™(p)|n € N-} such that N-. = N U {0} . A point p € X it is said a fixed point of H
if H(p) =p, H issaid to be topologically transitive if 3 n > 0 such that H"(U) n
V # @ , where U,V are any two non-empty open subsets of X . If 3 § > 0 for this any
x € X and neighborhood N of x, 3y € N and n > 0 where d(#"(x), H"(y)) > §,
then H has sensitive dependence on initial conditions, briefly , we will write (SDIC).
If for every pair non-empty open subsets U and V in X, there are a positive integer n
such that HX(U) NV # @ for every k > n , then we called that H is topological
mixing . If for any pair of non-empty open sets U and V in X , there exists some n > 0
such that H™*(U) n H™(V) = @ , then we called that H is weakly blending, , and
called strongly blending, if for any pair of non-empty open sets U and V in X , there
exists some n > 0 where H™(U) n H™(v) contains a non-empty open subset. H is
said to be locally everywhere onto if for every open set U of X , there exists a positive
integer n such that H™(U) = X ,[4] . Let H:A - A and L: B - B be two continuous
map , if there exists a homeomorphism h: A — B such that h°H{ = L°h then H and L
are called a topologically conjugate . The homeomorphism h is said to be topological
conjugacy between H and L . [5]

3. On Various Concepts for Topological Dynamical Systems
The set A,,, = {0,1} . we indicate to A,,, as an alphabet and its elements as a

symbols . Let Y, (33) be the set of each bi-infinite sequences (1-sided sequences)
with their elements of 3}, (33%) i.e. every element § of Y, (33) is of the form :

S={u,8 181,808, Sy}, Si€ Ap,of S={S0,81, ) Sp, .}, S; E
Ap .

Now take another sequence S €3, ,8 ={..., S_i, e, S_1, So) S1y o) Siy o}, S; €
An

or $={8, S1,.., Sp, ..}, S; € A, . The metric between S and S is defined as

d(s,8) =%, 2. — , wherei € Z is the minimal number such that S; # S;

i:—OO m
In case of bi-infinite sequences , or

(s, s) = 2-;”1. , Where i € N is the minimal number such that S; #
L 021

S;
In case of 1-sided sequences . [6 ]

Definition 3.1 :
A shift of finite type (SFT) is a shift space X c Y, which has a finite number

of blocks from symbols 0 and 1 such that the blocks do not exist in any element of X .
The blocks are called forbidden blocks in X . [3]
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Definition 3.2 :
A shift of finite type (SFT) is an M —step or have memory M , for some

integer M > 1 , if it can be described by a set of forbidden blocks that have length
M+1.][3]

Since we have four possible various blocks of length two i.e. 00,01,10 and 11,
then we have 16 sets of forbidden blocks, as shown in the table(1);

Table(1)

Foreachi ={1,2,..,16},X; € ), is the one-step SFT with set of forbidden
blocks F; . [3]

Fi=0 F, = {00} Fy = {01} F, = {10}
Fs = {11} F, ={00,01} F, ={00,10} Fg = {00,11}
Fo = {01,10} Fio = {01,11} Fiq = {10,113 Fy, = {00,01,10}

Fis = {00,01,11}

Fia = {00,10,11}

Fic = {01,10,11}

Fie = {00,01,10,11}

4. Some Properties of the Shift Map
In this section we introduce the some results on shift of finite type space

Theorem 4.1

Let the one-step SFT X;,i ={6,11,12,15} is finite set then o:X; —» X; is
stable

Proof :

If X; =Xg such that the forbidden is F, = {00,01} since for every S €
Xe,S;#0foreveryi e N,so §; =1foreveryi € N, so §; = {111} therefore X,
is singleton set , so ¢ has the fixed point {111}, and the basin of the fixed point is
X4 , SO o is stable .

Theorem 4.2 :

Let the one-step SFT X; ,i = {3,4}is infinite set then ¢:X; - X;,i = {3,4} is
stable . Proof :

Forevery X; ,i = {3,4} the forbidden of X; ,i = {3,4}is F; = {01} and F, =
{10} , so X; ,i = {3,4} has two fixed point and do not have any periodic point
therefore the periodic point are not dense . Now let U = {000}, V = {111} two open
balls belong to X; ,i = {3,4} then for any § € U™ (S) ¢ V for all integer n. So
X; ,i = {3,4} is not transitive and not Deveaney chaotic . Now if take the same open
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balls Uand Vsuch that ¢™(U) N o™(V) = @ for any integer ntherefore X; ,i =
{3,4} is not weakly blending . To prove X; ,i = {3,4} is not SDIC let § = {00} and

T ={100} then d(S,7)=1,0"(S)={00} and o™(T) = {00} o)
d(c™(8),6™(T)) = 0.Hence X; ,i = {3,4}isnot SDIC. n
Theorem 4.3 :

Let the one-step SFT X;,i = {7,9} is finite set on discrete topology then
o:X; = X;,i = {7,9} have a weakness chaotic .

Proof :

If X; =X, and X, ={111,0111} there are only four open balls are
X5, 0,(111) and (0111) . Because ¢(111) N o(0111) = (111) so X, is strongly
blending and weakly blending . Since (0111) dose not contain any periodic point
then the periodic points is not dense. X, is not transitive because (0111) & ¢™(111)
for all integer n . Now let § = (011) and 7 = (11) then d(S5,T) =1, ¢"(S) =
A1), o™(T) = (A1) so d(a™(S), o™(T)) =0, therefore A S > 0such that
d(a™(8),a™(T)) > & , therefore X, is not SDIC .

If X; =X, and Xq ={00,11} there are four open balls in X, are
Xo, @, (00),and (11) . The periodic points of X4 are dense since every point of Xq is
periodic . to prove it is not transitive , so that let U = (00) and ,V = (11) , then
o™(U) =(00),and cs™(U)NV =0, forall n>0.Now let § =1, and let § =
(00),7=(11) . So for each n>0 , o™(S)=S,0"(T)=T , and
d(c™(8),6™(T)) = 1, therefore X, is SDIC .To prove X, is not weakly blending and
not strongly blending , let U = (00) and ,V = (11). Since ¢™(U) = U and a™(V) =
V,thena™(U)No™(V)=0,foralln>0. n

Theorem 4.4 :

The one-step SFT Xg on discrete topology then o:Xg — Xg has Devaney
chaotic .

Proof:

Since Xg = {01,10} so it has the only open balls Xg, @, (01)and (10). The
periodic points of Xg are dense since every point is periodic point . Now let U = (01)
and,V = (10). So forn > 0, itis either s*(U) = U or ™ (V) =V . If a*(U) = U
then ™*1(U) =V, and ¢""1(U) NV # @, and if 6" (U) =V, then a*(U) NV #
@ . therefore Xg is transitive , so that o has Devaney chaotic. [
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Remark 4.1: If Xg on any another topology then it is stable .
Theorem 4.5 :
The one-step SFT X, is infinite set then g: X, — X, has Devaney chaotic, and

mixing topological, totally transitive, locally everywhere onto, weakly blending and
strongly blending.

Proof:

To prove that the periodic points of X, are dense , let e >0 and § =
(80818, ...) € X,. Choose n such that Zin <€, now let T = (7,7.7, ...) be another

point such that §; = 7; fori =0,1,2,...,n . Then d(5,7T) < Zin , therefore the set of

periodic point to be dense in X, we need to structure a periodic point within € of § .
Let T = (8058, ... 5, 1) it is obvious that T is periodic point within € of §. So the
periodic point are dense in X, .

To show that X, is locally everywhere onto let U be nonempty open ball in X,
such that § = (5,89, ...S, ...) € U, then we have two statuses ; status 1: if §,, = 1,
because (10) and (11) are allowed , then ¢™(U) = X, . Status 2: if §,, = 0, because
(00) is forbidden then VS € U, S,,,; = 1 therefore ¢"*1(U) = X, . because for
every open set § € X, there exists a positive integer n such that 6™( U) = X, , so that
X, is locally everywhere onto .

Since X, is locally everywhere onto , therefore it is transitive , topological
mixing , totally transitive , weakly blending and strongly blending . And since X, has
dense of periodic point and transitive , then it is SDIC, therefore X, is Devaney
chaotic . [

5. The Horseshoe Map

The horseshoe map will be denoted by F. Its domain is the set S in R?
collected of the unit square T = [0,1] x [0,1] , bounded on the left and right by
semicircles B and E such that S contains its boundary . The map F shrinks S vertically
by a factor of a < 1/3 , and expands S horizontally by a factor of b = 3 . The result
figure is folded by F therefore it fits again inside S, with only the semicircles popeyed
to the left of T. Thus the range of F looks like a horseshoe when S is partitioned . We
can see the effect of F on each member of the partition . Specifically, F sends
semicircles B and E in to B and sends the square T into two strips inside T plus a
curved strip inside E . [7]

The base interest in the horseshoe map F is to describe its dynamics on the
attractor :

A={XeT:F"X)€eT, V n€Z}

To make our task easier , we first consider the set
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AP ={X:F'(X)ET , ¥V n€Z}

For the positive orbit of X, orb*(X) . To be in T , X must belong to either V, or V; .
Now if F*(X) € T , then obviously F*(X) e V,uV; or X€ F"1(V,) U F~1(V;) .
Now if deduce that A* is the product of a cantor set with a vertical interval .

Next we take the set
A"={X:F'X)ET,Vnez}

For the negative orbit of X, orb™(X) . To be in T , X must belong to either E, =
F(Vy)or E; = F(V;) . Now if F~1(X) € E, U E, , therefore X € F(E,) U F(E,) , (see
Fig (1)) . [8]

Vo Vi
Figure (1)
6. Applications of topological conjugacy

Now , we define the topological conjugacy map h: Y, — A is defined as
follows :

ForS €Y, we let

~ _(HYS) eV, S§,=0, nez*
h(S) = {8,5,8; ...},  where Sy = {H"(S) cv, S.=1, nezt

B _( HY(S) € E, S =0, mnez
h(g) = {...5_35_25_1} ’ where Sn - {Hn(S) € El Sn =1 , n €7-

Theorem 6.1 :

Let h: ), —» Abeamap, then h is a homeomorphism .

Proof :

To prove that h is one-to-one . Let S and T are in ), , and h(S) = h(T) , then
h(S)(h~1(S)) and h(T) (h~1(7)) lie on the same vertical ( horizontal) line in T,
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such that thy have the same forward (backward) sequence . Therefore § = T, so that
h is one-to-one .

To prove that h is onto , let J, ={Vin C,UC, : h(5,5:S,..) =V} and
Jo.={Vin CLuC; : h(..5_35_,5_1) =V} then J, and J_,, are closed for all n .
Because N, Jn IS @ single vertical line and N, <o/, is single horizontal line in T . It
follows that N _g<n<o Jn 1S @ UNiQue point v By construction , h(S) = V'such that
S =8_385_5,85_1,85,8;...,inY, forall n.sothathisonto.

Therefore we need only to show that h and h~! are continuous , let § =
“'5_25_1,505152 and T = "'T_ZT_l,g-(')jig} be |n 22 y Wlth h(S) = V al’ld

RT) =W, ifd(S,T) = IS =TIl = 2penss D < L then s, = 7 for k =

21kl — pn-1 "

0,1,2,...,n, then V and W lie in the same vertical strip of width 1/3nJr1 , SO that
|V —-WwW]| < 1/3n+1 .similarly , 8, =7, for k = —1,-2,...,—n ,which means that
¥V and W lie in the same horizontal strip at the nth stage . So that there isa §; > 0
such that ||V — W|| < &; . Now choose & > 0 such that § < 1/3n+1 and 6 < §; it

follows that d(V, W) = ||V — W|| < & . consequently h is continuous . The proof that
h~1 is continuous follows by a similar argument . [

Proposition 6.2 [9]

1. disametricon}y, .
2. fS; =T fori=0,..,k,thend[S,T] < 1/2k.
3. Ifd[s,T]<1/2*thenS;, =T, fori <k.

Theorem 6.3 :

Let 11 == VO N EO ,12 == Vl N E0,13 = VO N El and 14_ = V1 n El y Then U;l—=1lj
is closed and invariant under h.

Proof :

It is clear h(l;) c I; ,j=1,234 so U}, is invariant . To prove that
Uj*zllj is closed, we need prove that each [; ,j = 1,2,3,4 is closed , we suppose that
S€l ,j=1234 suchthat §= 8,8, 8,..,8; €{0,1} for every i € N which
convergeto . Let T ¢ I; ,j = 1,2,3,4 . Since the § converge to T, there is another
integer k such that , if i > k then d(S,7) < 1/2%*1, By Proposition [4.3] , this
forces 7,73, ..., T+ 1 t0 agree with the corresponding entries of §; for i > k, so that
T, €{01}andT € I; ,j =1,23,4,50 Uj_, ] isclosed . n

Proposition 6.4 : The h(X;) is located in Uj*zl I

Proof: since X; dose not have any forbidden block , then h(X,) is located in
R
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Proposition 6.5 : The h(X,) is located in I, UI; U I, .

Proof: Let § € X, such that for every i € Z , §; = 0, since {00} is forbidden
block, but 10 is allowed therefore §;_; =1 .andif §; =1 then §;_; = 1 or 0 since
11 and 01 are allowed , so that h(X,) € I, , then h(X,) is located in I, U I3 U I, .

Proposition 6.6 : The h(X3) islocatedinI; UI; U I, .

Proof: Let § € X5 such that for every §; =1 then §;_; =1 foreveryi€Z
since 01 are forbidden , and if §; = 0then §;_; = 0 or 1 since 00 and 10 are allowed
, therefore h(X3) ¢ I, and h(X3) islocatedinI; UI; U I, .

Proposition 6.7 : The h(X,) islocatedinI; UL, U I, .

Proof: Let § € X, such that for every §; =0 then §;_; =0 foreveryi € Z
since 10 are forbidden , and if §; =1 then S§;_; =0or 1 since 00 and 01 are
allowed, therefore h(X,) & I3 so h(X,) islocated inI; U, U I, .

Proposition 6.8 : The h(Xs) islocated inI; UL, U5 .

Proof: Since the only forbidden block is {11} so that 01,10 and 00 are allowed
, therefore for every § € X,if §; = 1then §;_; =0,i € Z, therefore h(X5) & I, SO
h(Xs) islocatedinI; UI, U I,

Proposition 6.9 : The h(X,) is located in I, .

Proof: since the forbidden block of X is {00,01} then for every S € X¢, S; #
0 for every i € N . since 11 is allowed then §; = 1 for every i € Z , therefore h(Xg)
¢ I; UI, Ul;and h(Xe) is located in I, .

Proposition 6.10 : The h(X,) is located in I, U I, .

Proof: Since X, has two forbidden block {00}and {10} then there isS; =1
and S;_; =0o0r1,i €Z such that X, = {111,0111} so that h(X,) € I, U I; and
h(X,) is located in I, U I, .

Proposition 6.11 : The h(Xg) is located in I, U I5 .

Proof: let § € Xg such that for every §; = 1then §;_; = 0andif §; = 0 then
Si_1=1,i €Z ,since {00} and {11} are forbidden block , so that h(Xg) € I; U I,
and h(Xg) is located in I, U I5 .

Proposition 6.12 : The h(X,) is located inI; U I, .

Proof: since X4 has two forbidden block {01}and {10} then let § € X4 such
that foreveryi € Z if §; =1 than §;_; =1 andif S; =0then §;_; =0, so that
h(Xy) € I, U I; and h(Xy) is located in I; U I, .
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Proposition 6.13 : The h(X;,) is located inI; U I5 .

Proof: since X;, has two forbidden block {01}and {11} then let § € X;, such
that forevery i € Z if S; =1 than S;_; = 0 or 1 such that X;, = {000, 1000} , so
h(X1) € I, U I, and h(X;,) is located in I; U I5 .

Proposition 6.14 : The h(X;,) is located in I, .

Proof: since the forbidden block of X, is {10} and {11} then for every i € Z
let S € Xy1,8; #1 . since 00 is allowed then S; =0 for every i € Z , therefore

Proposition 6.15 : The h(X;,) is located in I, .

Proof: The forbidden block of X, is {00},{01} and {10} so that for every S €
Xi2, 8 =1,i €Z ,therefore h(X,;) €1, UI, UI; and so h(X;,) is located in I, .

Proposition 6.16 The h(X;3) , h(X;4) and h(X,¢) are empty .
Proposition 6.17 : The h(X,5) is located in I .

Proof: The forbidden block of X< is {01}, {10} and {11} so that for every § €
Xi5, 8, =0,i €Z ,therefore h(X;5) € I, UI; U, and so h(Xys) is located in I; .

LetM1:U?=1]j,M2212U13UI4,M3211U13U14,,M4_211U12U14_,
M5=11U12U13 y M6=I4_ y M7=12UI4 y M8 =12UI3 y M9=11UI4 y M10=

11 UI3 y Mll = 11.
7. Some Chaotic Properties of the Shift Map

Theorem 7.1 :

Let the map o:X; - X;,i ={2,5} is h — conjugate to the map F:M; —
M;,i ={2,5}, and ¢ has chaotic map in sense of Devaney , topologically mixing ,
totally transitive , weakly blending , strongly blending and locally everywhere onto
thenso F .

Proof:

To prove the set of periodic points in M;,i = {2,5} is dense , let U be any
open set of M; ,i = {2,5} and since that ¢ h —conjugates F , then h~1(U) is an open
set of X;,i ={2,5} and thus must contain a p —periodic point § € X;,i = {2,5} .
Since § =aP(S) , so that h(S) = h(aP(S)) = (FP(r(S)) . So h(S) is a
p —periodic point of F . Furthermore , h(S) € h(h‘l([U)) = U, and therefore the set
of periodic points are dense in M; ,i = {2,5} . To prove F has locally everywhere onto
, let U be any open set in M; ,i = {2,5} then h=1(U) is an open set of X;,i = {2,5} .
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Since o is locally everywhere onto , there exists a positive integer n such that
o' (AN W) =X;,i =25} , so that h(o™(h7(W))) = ()" (h(h™(V))) =
(F)™(U) . Since h is one to one and onto then (F)™*(U) = M;,i = {2,5}, So F has
locally everywhere onto .Since F has locally everywhere onto then it is transitive
,topologically mixing , totally transitive, weakly blending and strongly blending .

Also since Fhas dense periodic point and transitive then it is SDIC and F has Devaney
chaotic . [

Theorem 7.2 :

Let the map o:X; - X;,i = {3,4,6,11,12,15} is h — conjugate to the map
F:M; - M;,i = {3,4,6,11} ,s0 that F is stable .

Theorem 7.3 :

Let the map o:X; » X;,i = {7,10} is h — conjugate to the map F:M; —
M;,i = {7,10}, so that F has weakly blending and strongly blending .

Proof:

It is sufficient to prove F has strongly blending . Let U and V be two open sets
in M;,i = {7,10} . Since ¢ has weakly blending and strongly blending then h=1(U)
and h~1(V) are open sets of X;,i ={7,10} and thus ¢™(h~2(U)) N o™(h~1(V))
contains an open set , so

h(o™(R71(U))) N R (a™(h71(V)))

= ®" (h(h7*W))) n (B (r(h(W)))

= (F)™(U) n (F)™(V) contains an open set also .
Hence F has weakly blending and strongly blending . [
Theorem 7.4 :

Let the map o:Xg — Xg is h — conjugate to the map F: Mg - Mg, than F is
chaotic map in sense of Devaney .

Proof:

To prove that F is chaotic , we first prove that it is transitive . Let U and V be
two open sets in Mg and suppose that F h — conjugates o , then h(U) and h(V) are
open sets in Xg. Since o is transitive , there exists n € Z* such that o™(h(U)) N
h(V) = @ . Hence h((F)*(W))Nh(V) =0 , so (A™(W)NV =@ . Hence F is
transitive .
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To prove that the set of periodic points are dense in Mg . , let U be any open
set of Mg and since that & h —conjugates F , then h=1(U) is an open set of Xg so there
is a p —periodic point S € Xg . Since § =aP(S) , so that h(S) = h(aP(S)) =
(FP(h(S)) . So h(S) is a p —periodic point of F . Furthermore , h(S) €
h(h~1(U)) = U, and therefore the set of periodic points are dense in Mg , o that F is
Devaney chaotic . ]

Theorem 7.5 :

Let the map o: Xy = Xo IS h — conjugate to the map F: Mg — Mg , then F has
dense periodic points and has SDIC .

Proof:

By the same technique used in the previous proof , so that F has dense periodic
points. To prove SDIC , let § > 0 and S € Mgy and N is neighborhood of § ,3 T € N
and suppose that F h — conjugates o , then h(S) € X, and h(N) is neighborhood of

h(S) . Since X, is SDIC then foralln >0, d (a”(h(S)),a”(h(T))) > &, , hence

a (@) h(E" (7)) > 8, d(n (@), h7 (@) >
81 . Consequently , d((F)™(S), (F)*(T)) > & ,s0 Fis SDIC . n

Conclusions

e The map F:M; - M;,i ={2,5} has chaotic map in sense of Devaney ,
topologically mixing , totally transitive , weakly blending , strongly blending
and locally everywhere onto .

e ThemapF:M; » M;,i = {3,4,6,11}, is stable .

e Themap F:M; - M;,i = {7,10} has weakly blending and strongly blending .

e The map F: Mg = Mg has chaotic in sense of Devaney .

e The map F: My = My, has dense periodic points and has SDIC .
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