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Abstract

In this paper, we use cubic b-spline to construct an approximating polynomial to agree with
calculating the control points of the integro cubic b-spline function for solving fractional differential
equations for various values, two examples are considered to demonstrate and illustrate the applicabil-
ity of the method, and to compare the compact results with other known methods, convergence analysis
for fractional derivatives of the method is considered.
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1 Introduction

In the last few decades, many physical problems in science and engineering in
the fields of mechanics electricity climatology are modelled by fractional differential
equations. Fractional calculus are usually difficult to solve analytically so there is a
need to obtain an efficient and accuracy approximate solution [1, 2]. For an
introduction of fractional derivatives and Taylor series, we refer to [3-5].

Several method have been proposed for solving these equations but most of
them have their limitation such as unrealistic assumptions, linearization, low
convergence and divergent results. For example, the integro cubic spline methods
over the equally spaced knots partition were studied in [6, 7]. The b-spline function is
a significant role of numerical analysis and approximate solution as used of cubic
b-spline in approximating solutions of boundary value problems in Maria M. and
Dambaru B. [8]. Also in [8, 9] presented approximate solutions to linear and nonlinear
ordinary differential equations using Bernstein polynomials.

In this paper is present a cubic B-spline method for approximation solution for
a Bagely-Torvik fractional differential equation

a®)y” +b@®)D Py +c(y = fx), 0<a <L tefab] (1)
where the function a(t), b(t), c(t) and f(t), are sufficiently smooth real val-
ued functions as[10, 11, 30].

Here we use focus on spline function can used to deal with the new
interpolation problems. There have been many works on b-spline function such as
used to construct efficient and accurate numerical methods for solving differential
equations and well known that the b-spline has been widely used for the numerical
solution of boundary value problems in [12, 13], in the last years the interest in
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b-spline method for solving fractional differential equations is growing and models
involving several type of b-spline are widely used in that fields, for an introduction to
b-spline approximate solution see instance [13-16] while a survey on tis applications
can be found in [17-20].

The aim of paper is study integro cubic b-spline interpolation problems. In
section 2, we assume that the control values at the knots are used by apply to solve
fractional differential equations. In section3, we describe the use of cubic b-spline for
interpolation and approximation and discuss several for error estimation and
convergence analysis. In last section, we apply cubic b-spline method to
Bagley-Torvik equation and results to show the applications and advantages of
approximate solution by graph and tables.

2 Preliminaries and Basic Definitions

Definition 2.1. [25] Suppose that « > 0, x > a,a,a,x € R. Then the Caputo

fractional derivative of order « > 0is defined by the following fractional operator.
n

(Lt x(x—f)”‘“‘la—f(g‘?)dg‘Z n—1<a<neN;
Dife = {10 ! “

a
dx™
Definition 2.2. [24, 25] Riemann (1953) considered power series with non-integer

exponents to be extensions of Taylor series and built up generalized derivative for
such functions by using the formula

d7x?  T(p+1)
x4 T(p—q+ 1)x

f(x), a=n¢€N.

b—q

)

this being an obvious generalization of the formula
09 xP F'(p+1)

ot =Pl Ulp=2][p— g+ 1xP = g =™

for p a non-negative integer.
Definition 2.3. [24, 26]

Suppose that DX*f(x) € C[a,b] fork= 0,1,...,n + 1 where 0 < a < 1,then we have
the Taylor Series expansion about x =T

f(x) = ¥° x-D'* Dief(1) + (D(anﬂ)_af)(z) (x—1)® e With a<Z<xforallx€
1=0p(jg+1) 2 r((n+1)a+1) - ="
(a,b],

Where DX* = DY D% ...DY  (k times).

Definition 2.4 [27]

The modulus of continuity of a function f continuous on a segment [a, b], f € C|a, b]
is a function w(t) = w(f,t) defined for t € [0,b — a] by the relation

w(®) = o(f, t:6)= max |f(t) - f(0)].

Definition 2.5 [6, 7, 8, 12]

Suppose that us consider a partition A, , on the interval [a, b] is divided into n
subinterval using the grids x; = a+ ih,i = 0,1,2,...,n, where b = a + nh.

Given A, , a piecewise polynomial function S on the interval [a, b] is called a spline

of degree k if S€ CX~'[a,b] and S is a polynomials of degree at most k on each sub-
interval [x;, x;,,]. Let S, (A,) denoted the set of all polynomials of degree k
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associated with A,. This set is a linear space with respect to A, of dimension N + k.
Now that we have defined spline functions, we introduced a special kind of spline
function called b-spline of degree 3, b-spline

cubic b-spline is defined by
B} (x)
( (x — xi)
(i3 = %) (Kipp — %) (X — %) ,
(x —x) (x40 — %) (x —x) (53 — 1) (x — x44)
(xi+3 - xi)(xi+2 - xi+1) (i3 = %) (Kipz — Xi31) (Kipp — X41)
(xi+4 - xi+1)(x - xi+1)2
(Cira = Xip1) iz = X1 ) (K — Xi4q)
(x —x)(xpp3 — x)?
=1 Fipz = %) Kz — X40) (Kipz — XXz — Xi4p)
(X4 —X)(x —x;51) (X453 — X)
(Cipq = Xip1) (i3 — X)) (Kiyz — Xi42)
(xi+4 - x)z(x = Xi42)
(Kira = Xip1) Cppq — Xi10) (Xip3 — Xi40)
(Xj4q — x)*

(Xipa = Xip1) (Xipa — Xig2) (Xipa — Xig3) '

+

Note that the cubic b-spline is zero except on the interval [x;,x;,]. This is true for all
b-spline. In fact B¥ (x) = 0 if x & [x;,x;;14+1), Otherwise Bf(x) > 0 if x €
(x;, %4141 )- Since we are only referring to b-spline of degree 3, we write B; instead
of B, In our case, we restrict our attention to equally- spaced knots. Therefor after
including four addition knots, we assume that A x_, < x_; < x, <+ < xpy_; <
Xy < Xyyq < Xpy4o iS @ uniform grid partition using (1) and letting h = x,,, — x;
for any, +0,1,2,...,n, we defined the uniform cubic b-spline B;(x) as

Bi(x)
(((x—x;,)° x € [x;_5%x;_1)
| _3(x—x,_ )%+ 3h(x— x,_) + 3R2(x —x,_ ) + h3,  x € [x;_p %, ;)
= %4 —3(xj41 — 003+ 3h(x;p — )%+ 3h%* (x4, — x) + B3, X € [x;_5,%;_1)
| (xiy — 2%, x € [x;_p % 1)
k 0, Otherwise

We list some properties of B;(x) as follows:

B;(x) (i =-1,0,...,n+ 1) are linearly independent, and they form the basis splines
of S;(I1),BF(x) = BF(x + h)(i=-1,0,...,m;k = 0,1,2)

YL Bi(x) =1 (x € [a,b]).
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Lemma 2.1. Forj = 0,1,2,...,n,let y; = y;(x)for short,we have I; = ET_Iyi.

Proof. See [12]

Lemma 2.2. Let S(x) be the integro b-cubic spline polynomial obtained by (2) and
(3) for y(x). for j = 0,1,2, ..., n, we have

S
24 ( —E7'— 31 +3E + E?
= —_— 1 2 y] (4)
hD\E-*+ 111 +11E+ E
S"j
_ 24 (—E"'+31-3E +E? c
T RD\E'+ 111+ 11E + 52 )7 ®)
Sj(1/2)
24 (O.BE‘1 —1.3916676531 + 1.09E) 6)
=3 —1 2 Yj
W3D E-'+11I+11E+E
Proof. The integro-cubic spline interpolation problem is start follows
Xj+1 Xj+1
j S)dx =1; = J. y(x)dx (=01,..,n—1) (7)
Xj Xj
S(xo) = y()t's(xn) = yn (8)

From equation (3), obtain the desired integro cubic b-spline with a known control
points as:

I = [/ 51 By (dxand 1) =
f;ji+1zn+2 C,B, () dx 9)

i=j—-1%i

x]-+1 Xj+1 Xj+1

Ij=f Cj_lBj_l(x)dx+j Cij(x)dx+f Ciy1Bj1(x)dx

X :

X i j

j Xj

J
x]-+1

+ f Ciy2Bjp2(x)dx
xj

Using equations (3) and (9), with the boundary conditions of equation (2), we have

h 33h 33h h 3h
[ = Cig+—Ci+——Ciuq +5-Cripy [;=—(Ciy + 116+ 11C;y +
Cj+2)
h

h
= 22 (G + 111G + 1G5, + Cis)
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h

h
= 22 (€2 + 46, +6) +11(Cy +46+ C) + 11(C+4C)1 +Ci)

1

ho ., e 1
o BT+ 1L+ 11E + E))S; = 2 (g + 4L+ 1,

4 E '+ 41 +E

J h\E-14+11I + 11E + EZ

Here using the lemma 2.1, we obtain

(i+ 1)! D

4 E7'+4I1+E E—1

P A PPN ik S el U
; ¥ a)) () =5~
i=0

h\E-* + 111 + 11E + E? D

By the same way, we can find the following:

/2 _ 24 <—O.3OO90111E'1 + 1.09076654631)1
. = y

J i E-'+ 111 + 11E + E?

12y 24( —03E"1+1.09] E—1
s (E-Y),,

j 3\E-'+11I+11E+E2)\ D

1z
am _ 24 (03E™! — 13916676531 + 1.09E
i E-1+ 11] + 11E + E2 Yi

3
hzD
and finally

g _ﬁ( E"'-21+E )I g _ﬁ( E"'-21+E )(E—I)
J n3 \E"14+111+11E+E%2/) )’ J h3 \E~1+111 +11E+E? D Yj

o _ 24 (1-2E4E*—E 42— E
T wp\ T E i1+ 11E+E2 )Y

" 24 (—E_1+3I—3E+E2)
j

J 7 m3p \E~1+11 +11E +E?

Hence, equations (4)-(6) are obtained.

Theorem 2.3. Let y(x) be a function of class C* [a,b]and S(x) be the integro

(10)

interpolating b-cubic spline with fractional derivative obtained by (2) and (3) for j =

0,1,2,...,n we have
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11
S(x) = y(xj) + mh‘l}/@)
+ o(h%) (11)
Sj(l/Z) _ y(l/z) (xj) + hzy(3/2)
+ o(h?) 12)
Sj” — y”(xj) _ %hzy(ll-) +
o(h3) (13)

1 1
where the constant p = —196/739h7z + 167/120hzy(x;).

Proof. We give a brief proof of (11), the proofs for the others are similar and omitted
by (4) and lemma 2.1, we have

o A4 (—ET-3I43E4E
i T hD\E-1+ 111 + 11E + E2 )"

Suppose that E = e*and u = hD, we get

6 4 [ —e % —3]+3e% e
J 7 hD\e ® + 111 + 11e* + e
24+ 12u+ 8u2+3u3+%u4+-~ 11
S; = =1+mu4+cu5+---

24+ 12u +8u? + 3ud + %u‘* + -
where c is a certain constant and the same technique in [12], we obtain
S. = 11 4 h4 h5
i = () + 5207 (x))h* + o (h®)
11
S(x) = y(x]-) +%h4y(4) + o(h®)

From equations (6) and (11), with apply lemma 2.1, we have

s _ 24 (037" ~1.3916676531 + 1.09E
i E-' + 111+ 11E + E2 Vi

3
h2D
S0/

J

24 (—1.0907665463 + 0.78986543634 + 1.3916676563u” + 0.78u> + 1.39u* + 0.789u5>

- 3 2 2
nzZD 24 +12u + 8u? + 3u

5(1/2) _ 24D (q + bu + cu?® + dud
j B h%D(l/Z) D 24 + 12u + 8u? Vi

12a

ey 24002 (0 (b-%F)
S(/): _+ = 7 u+..-)y.
J o \24 24 J
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3 a 1 1
(1/2) _ - —— V3 24 v
Sj —(au 2+b(1 24)u 2 +cuz + >yj’

12a
24

3 1 1
SWP =anD7 + (b =) h7T + chay; + -

3 1 1
S = —1.0907665465h™2D " + 0.8255430531A 7z + 1.3916676563hzy; +

Form definition 2.3 and Taylor series, also using [28, 29], we have

I = YO0 () + iy + 00

1 1
where p = —196/739h7z + 167/120hzy(x;).

To proof of equation (13), the proof for the others are similar and omitted by equation
(5) and lemma 2.1, we have

4u®> 8u® 16u* 32u°

2 _ L2u _ —
Ec=e*=1+42u 2 + 3 a0 + q +
5" _2_4(—5‘1+31—3E+E2)
J T wp \e1ur+nie+£2) Vi

3,12 4, 30 &5
S" _ u+zu +Eu +-- (24D2)
J 24+12u+8u?+3u+-- \h3pp%/) 7 J

62
1 ud (24 +24u +6u” +u’ +o- )

S"- - [

J R2u  24+12u+8u? +3ud +-- ]yf

)b,

" = (24+12u+6u2 Heoe
J 24+ 12u+8u? +--

s =(1+ %uz +cu® + -+ )D?%y;
S =y"x) + % h2y® (x) + ch®y® (x)) where cis
constant
S =y () + %h}y(‘l) () + o(h%)
we obtain

h2
S/ =y"(x;) - Ey<4> +o(h®)

Theorem 2.4. Let y(x) be a function of class C*[a,b] and S(x) be the integro b-cubic
spline polynomial obtained by

Xj+1 Xjt1
J s(x)dx = I = j y(x)dx ,j=0,1,2,n—1and
X; xj

J
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S(xo) = ¥,5(x1) = yy, 000, S(xppy) = ¥4, S(x) =y,
We have

IIy(a k)(x) —S(a k)(x)||oo =0k %), k=0,1,23.
where |[f(X)]]|, = max lf(x)], O<a<l.

Proof. First we prove ||y"(x) —S" (x)||, = o(h?). since S(x) is a cubic spline
hence S"'(x)is a piecewise continuous function over [a, b] with respect to the
partition, forj = 1,2,...,n. As [12], suppose that S”(x) denoted the restriction of
S"(x) over [x;_4, ]]we have

- Xj-

X
S”(.X') — SII xj—1) J + SII( ])

Now define another linear function g(x)on [xj_l,xj]as follows

96 =" () =+ y7 () =

Clearly g(x)is a linear interpolation of y"’

15760 = g (e = 2, 225 | (570505 C-) =+ (50D 7 ()) =]
= o(h?)

1" () = ¥" ()leo
=I1S"(x) = g(x) + g(x) — y" (Nl

<IS"() =gl + lg(x) = y" (O)]oo
< 0(h?) + o(h?) = o(h?).
and using theorem 4.2 in [12],

IS(x) —y(x)| = f;j_l S’ (x)dt + S(xj_l) — f;‘j_ly’(x)dt + y(xj_l)

= J; _[5'G) =y (alde + [s(xj1) = ¥(x;-0)]

=o(h*) + o(h*) = o(h*)
And

2
Hy(a) _S(a)” Shrh“\/EWa
2

h
< [ID*Defl|

2
1Y@ — $@J| =2 IDEDf||, for o - % , obtain the following
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" r D = %) Gy =06
67 60— pin- @] < r@em-20!

2m-1 G = maxlg(zm) (X)l

1 1
m=1,g = fz,p, = Sz,and using [28, 29], we have

R [(x =) (X — 07
r! (2 —2r)!

|5(T+%) (x) — y(r+%)(x)| < ||y(3/2) ||00

r=0 IS () -y (o] < EEOS T

h2
< lvem,

2
If r =1, 2, respectively, using definition 2.4 and theorem 2.3, then we have

11
[ = y(x))] < S ey, x)

1
157" =y" ()l < 5 R (y®,x)
where w(y™,x)is the modulus of continuity.

3 Numerical Approximations and Discussion

To verify the applicability of cubic b-Spline to solve fractional Bagley-Torvik
differential problem in [9, 10, 11, 30], and to show the our approximate solution ap-

proach the nature solution,

a(x)y" +b(x)DYPy + c(x)y = f(x) (14)

With boundary condition

y(@) =a, y(b) =p (15)

where a(x), b(x),c(x) and f(x) are continuous real-valued function on the interval
[a, b], we let y(x) be a cubic spline with knots A. Then y(x) can be written as a linear

combination of B;(x),

y(x)

N+1

= > B (16)

i=—1
Where the constant C; are determined and B;(x) are defined in equation (3).

It is necessary that (16) satisfy (14 and 15) at x = x; where x; is an interior point that
is

a(x;)y"(x;)+ b(xi)D(l/z)y”(xi) +c(x)y(x) = f(x)
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and the boundary conditions are
y(a) = aforx,=aq, y(b) =B forxy=»b a7
From (16) we obtained
y(x) = ;1 By () + C;B;(x) + €41 B 1 (%) + CiipBiyp ()

1 1 1 1

1 1 1 1
y2(x;) = C;_yB? [ (x;) + C;B? (x;) + C;yy B, (x;) + Ciy , B, (x;) (18)
y'(x)=CioyB"i1(x) + C;B" (%) + CiyyB" 141 (%) + CiipB" 145 (%)
There yield

a(x)(C_yB"_1(x)+ C;B";(x) + Ciy1B" 1y 1(x) + Cy,B" 5 (%))
1 1 1 1
+b(x;) (Ci_lBiz_l(xi) + Cl-Bl.Z(xl-) + Ci+1Bi2+1(xi) +Ciy,BY, (xi)> (19)

+c(x)(Ci_yBioy (x) + CiB;(x) + Ciy1Biyy (%) + CiyyBiyy () = fx)

By the properties of cubic b-spline function, we get the following

. 1 1 —0.30091172 " 1
S0 B () =BG =
B 1 1.0907665463 ” -2
i(x)=2 B2(x) = N B";_(x;) = =
B 1 1 " 1 (20)
i+1(xl-)=g Bi+1(xi) =0 B i+1(xi) = ﬁ
Biya(x)=0 z B",,,(x)=0
Bi2+2(xi) =0
In (19) and (20) we get
c a(x;) 0.30091172b(x;) N c(x;)
i—1 hz \/E 6
—2a(x; 1,0907665463b(x;) 2c(x;
+Ci< hz( 1)+ 7h (1)+ gl)>
alx) clx,)
Ciss <h_21 + 61 > = f(x;) (21)

also for boundary conditions are given below

B_;(xy) = By_1(x,) = %

2
Bo((xo) = By(xa) = 3, 22)
By (xo) = By, (xy) = 6
By(xo) = By2(x,) =0,
C_, =6a—4C,+ C, (23)
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Cyi1 = 6 — 4Cy — Cy_4 (24)
where

_a(xy) B 0.300901172b(x;) N c(x;)

P h2 Vh 6
. _a(x;) 1.0907665463b(xl-)+c(xi)
EToh2 NG 6
_a(xy) | clxy)
YT T T

Py = =4Sy +ty, Py = =Syt Uy P3 =Sy tuyandp, =
ty—4uy (25)

fi =f(xg)—6sya, f, = f(x,) —6u,f

We can write a system of N + 1 linear equations in N + 1 unknown

p, p, 0 0 .. O 0 0 0 Co fi

s, t u, 0 . 0 0 0 0 /Cl\ £x)
| 0 s, t, u, .. 0 0 0 0]y ¢ | |
| & 0 L : I f()sCZ) | 26
\o 0 0 0 . s, t,, u,_; O /\Cw—l / \f(xN_l)

0 0 0 0 .. 0 0 p; P, N fa

The cubic B-spline approximation for the (14) and (15) is obtained using (16), where
the constant coefficient C; satisfy the system defined in (26). We will consider some
numerical examples demonstrating the solution using cubic b-spline methods

illustrated above. All calculations are implemented with maple programming.

Example 3.1.[10, 11] Consider the fraction boundary value problem:

-1/2
y"(x) + 05D y(x) + y(x) = 3 + x? (FX(S—/Z) + 1) (27)

y(0)=1, y(0.5)=1.25

The exact solution of equation (27)is y(x) = x? +
1

Using equations (18), (19) and (26) with maple programing, we obtain the following
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S(x)

(0.9999986665 + 0.33384000x + 0.3631999x%— 0.112000x3, 0 < x and x < 0.05
0.9999963322 + 0.33406003x + 0.3579997x* — 0.074666x3, 0.05< xandx < 0.1
0.999976330 + 0.33466006x + 0.3519996x2 — 0.054666x3, 0.1 <xand x < 0.15
0.999913337 + 0.33592004x + 0.3435999x2 — 0.036000x3, 0.15<xandx < 0.2
0.999827996 + 0.3371998x + 0.3372009x%— 0.025334x3, 0.2 <xandx < 0.25
0.99951551 + 0.3409499x + 0.3222009x2 — 0.005334x3, 025<xandx < 0.3
0.99933546 + 0.3427505x + 0.3161989x% + 0.001334x3, 0.3<xandx < 0.35
0.99853519 + 0.3496101x + 0.2965999x% + 0.020000x3, 0.35< xandx < 0.4
0.99802308 + 0.3534501x + 0.2869999x2 + 0.028000x3, 0.4 < x andx < 0.45
\ 0.99683518 + 0.3613701x + 0.2694009x* + 0.041037x3, 045<xand x < 0.5

Figure 1: Plots of approximate solution S(x), and y(x) exact solution of the Example

S%(x)

3.1
3 5
[ 0.5464362675x2 + 0.3766981011 Vx—0.2022055467x2, 0< x andx < 0.05
3 5

0.5386125377x2 + 0.3769463784y/x — 0.1348024942x2, 0.05< x and x < 0.1
3 5
0.5295853539x2 + 0.3776234397+/x — 0.09869436087x2, 0.1< x and x < 0.15

3 5

0.5169479586x2 + 0.3790451749+/x — 0.06499464002x2, 0.15 <x andx < 0.2

0.5073206275x% + 0.3804892294/x — 0.04573817251x%, 0.2<xandx < 0.25
0.4847530442x%+ 0.3847207642+/x — 0.00963003916396%, 025<xand x < 0.3
0.4757230019x% + 0.3867525237+/x + 0.0024084124949(%, 03<xandx < 0.35
0.4462361975x% + 0.3944927534+/x + 0.036108133343(% 035< xandx < 04

3 5

0.4317929441x2+ 0.3988257294+/x + 0.05055138668x2, 0.4 < x and x < 0.45
3 5

\ 0.4053151508x2 + 0.4077624924+/x + 0.07408847340x2, 045<xand x < 0.5
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Figure 2: Plots of approximate solution $(1/2)(x) and y(*/®exact solution of the
Example 3.1.

Table 1: The maximum error with fractional derivatives for the example 1

P e =15 —yl e/ = [s(/2) — /2]
0.00 0.000001335 0.000000000
0.02 0.006419850 0.050551888
0.07 0.020209123 0.081667288
0.12 0.030709868 0.089793607
0.17 0.037872913 0.086289194
0.23 0.042013639 0.071322238
0.27 0.042055440 0.056474671
0.32 0.039038100 0.032690240
0.37 0.004537612 0.015144138
0.42 0.023773368 0.027735174
0.47 0.009550370 0.063408535
0.50 0.000000080 0.087193755

Example 3.2. [30] Consider the fractional differential equation

y" (0 +3 Dy () + y(x) = 4x*(5x —

7
3) +§x5<%—i9)> + x5 —x*

F(z—) F(;

y(0)=0
y(0.5) = —0.03125
Exact solution y(x) = x*(x— 1)

Using equations (18), (19) and (26) with maple programing, we obtain the following
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S(x)
( —1.0x 107 —0.00260571x + 0.00004389x% — 0.090358215x3, 0 < x and x < 0.05
0.00001857 — 0.00372050x + 0.02233968x% — 0.23899678x3, 0.05 <x and x < 0.1
0.00011481 — 0.00660749x + 0.05120959x2 — 0.33522982x3, 0.1 < x and x < 0.15
0.00026155 — 0.00954225x + 0.07077466x2 — 0.37870775x3, 0.15<xandx < 0.2
_ ] 0.00018802 — 0.00843943x + 0.06526056x2 — 0.36951758x3, 0.2< x andx < 0.25
—0.00077126 + 0.00307215x + 0.01921419x% — 0.30812243x3, 0.25<x and x < 0.3
—0.00381667 + 0.03352616x — 0.0822991x2 — 0.19532980x3, 0.3< x and x < 0.35
—0.01080790 + 0.09345101x — 0.25351300x2 — 0.03226900x3, 0.35< xandx < 0.4
—0.02436935+ 0.19516192x — 0.50779028x2 + 0.17962875x3, 0.4 <x andx < 0.45
\—0.04797254 + 0.35251649x — 0.85746705x% + 0.4386486x3, 0.45< xandx < 0.5

-0.011

-0.02

0.3

Figure 3: Plots of approximate solution S(x), and y(x) exact solution of the example
3.2
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1
S2(x)
( 0.000066045)6%— 0.00294023/x — 0.16313332)6%, 0<xandx < 0.05

0.03361018x%— 0.00419814+/x — 0.4314-8638)6%, 005< xandx < 0.1

0.07704512x%— 0.00745576+/x — 0.60522616x%, 01<xandx < 0.15

0.10648087)6%— 0.01076728x — 0.68372150x%, 0.15<xand x < 0.2

0.09818488x%— 0.00952288+/x — O.66712951x§, 02<xandx < 0.25

0.02890786x%+ 0.00346655/x — 0.55628628363, 025<xandx < 0.3

—0.123819536% + 0.03783022+/x — 0.35264972x%, 0.3<xandx < 0.35
—O.38141171x% + 0.10544817+/x — 0.0582586x§, 035< xandx < 04
—0.76397330x%+ 0.22021664x + 0.3243029036%, 04<xandx < 045

3 5
\—1.29006394x2 + 0.39777225+vx + 0.7919391x2, 0.45<xandx < 0.5

-0.02]
~0.04]
~0.06]
~0.08]

Figure 4: Plots of approximate solution S (/2 (x) and y(*/?)exact solution of the Ex-
ample 3.2.

Table 2: The maximum error with fractional derivatives for the example 3.2

x e=1S—y| e(1/2) — |5(1/2) _ y(1/2>|
0.00 0.00000000 0.00000000
0.02 0.00005266 0.00042257
0.07 0.00033744 0.00087495
0.12 0.00033746 0.00132868
0.23 0.00064190 0.00169899
0.38 0.00074661 0.01079657
0.42 0.00061938 0.04468813
0.50 0.00000001 0.04621230
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4 Conclusions

We used a cubic b-spline to numerically solve some fractional differential
equations, and the tested their control points performance on the growth
Bagley-Torvik differential equation. A theoretical proof of the convergence of the
cubic b-spline method for the fractional derivatives from class arguments. Some
numerical examples were included to observed by the tables which are illustrated the
error estimation of the method. Finally, the efficient could arise from the control
points of the cubic b-spline that is necessary for numerical results.

Conflict of Interests.
There are non-conflicts of interest

References

[1] Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific; Singa-
pore, 2000.

[2] Tarasov, V.E. Fractional Dynamics; Nonlinear Physics Science; Springer. Berlin,
Germany, 2007.

[3] Podlubny, I. Fractional Differential Equations; Academic Press; Cambridge. MA,
USA, 1998.

[4] Oldham, K.; Spanier, J. The Fractional Calculus; Academic Press; Cambridge.
MA, USA, 1974.

[5] Sabatier, J.; Agrawal, O.; Tenreiro Machado, J. A. Advances in Fractional Calcu-
lus; Springer. Berlin, Germany, 2007.

[6] Lucas T. R. Error bounds for interpolation cubic splines order various end condi-
tions, Siam J. Numer. Anal., vol. 11 (3), 569- 584, 1974.

[7] Zhanlav T., Mijiddorj R., The local integro cubic splines and their approximation
properties. Applied Mathematics Computation, Vol. 216, pp. 2215-2219, 2010.

[8] Munguia M., Bhatta D. Use of cubic b- spline in approximating solutions of
boundary value problems, 1. J. Applications and Applied Mathematics, ISSN:
1932- 2466, vol. 10, Issue 2, pp. 750-771, 2015.

[9] Lakestania M., Dehghan M., Irandoust- pakchina S. The construction of opera-
tional matrix of fractional derivatives using B-spline fractions. Communications
in Nonlinear Science and Numerical Simulation 17(3):1149-1162, 2012.
DOI: 10.1016/j.cnsns.2011.07.018.

[10] Bagely R.L., Torvik P.J. Fractional Calculus-A Different Approach to the Analy-
sis of Viscoelasically Damped Structures, AIAA Journal, Vol. 21, No. 5, 1983.
[11] Zzahra W. K. and Elkhply S. M. Cubic Spline Solution of Fractional Bagley-
Torvik Equation, Electronic Journal of Mathematical Analysis and Applications,

vol. 1 (2), pp. 230-241, July 2013.

[12] Feng-Gong Lang Xiao -Ping Xu. On Integro Quartic spline interpolation. Jour-
nal of Computation Applied Mathematics. Vol. 236 (17) 4214-4226, 2012.

[13] Lang F. G., Xu X. P. Quadratic B-spline collection method for fifth order
boundary value problems, Journal of Computing, vol. 92 (4) 365-378, 2011.

[14] Pitolli, F. A fractional b-spline collection method for the numerical solution of
fractional  Predator-Prey  models. J. Fractal Fractional, MDPI,
doi:10.3390/fractalfract2010013, Vol. 2, No. 13, 1-16, 2018.

[15] Pedas, A.; Tamme, E. On the convergence of spline collection methods for solv-
ing fractional differential equations, J. Comput. Appl. Math., 235, 216-230, 2014.

274



Journal of University of Babylon for Pure and Applied Sciences, Vol. (27), No. (6): 2019

[16] Li, X. Numerical solution of fractional differential equations using cubic B-
spline wawvelet collocation method. Commun. Nonlinear Sci. Numer. Simul. 16,
4134-3946, 2011.

[17] Ali A. H. A., Gardner G. A., Gardner L. R. T. Acillocation solution for Burger’s
equation using cubic b-spline finite elements, Comput. Methods Appli. Mech. En-
grg, 100, 325-337, 1992.

[18] Ramadan M. A., . EI-Danaf T. S and Abd. Alael EI, A Numerical solution of
Burgers’ equation using septic b-splines, Chaos Solitons and Fractals. Vol. 26,
1249-1258, 2005.

[19] H. Zhong and M. Lan, Solution of nonlinear initial-value problems by the spline-
based differential quadrature method, Journal of Sound and Vibration 296
(2006), 908-918.

[20] Chuong N. M., Tuan N. V., Spline collocation methods for Fredholm integro-
differential equations of second order, Acta Math. Vietnamica, 20 (1995) 85-98.

[21] Siddigi S. S. and Akram G., Septic spline solutions of sixth- order boundary val-
ue problems, Journal of Computation, vol. 215, no. 1, pp.288-301, 2008.

[22] M. Dehghan, S.A. Yousefi, A. Lotfi. The use of He's variational iteration meth-
od for solving the telegraph and fractional telegraph equations. Internat. J. Nu-
mer. Methods Biomed. Eng., 27 (2011), pp. 219-231

[23] Daftardar-Gejji V., Jafari H. Solving a multi-order fractional differential equation
using a domain decomposition. J. Math. Anal. Appl. Vol. 189, 541-548, 2007

[24] Kumar P., Agrawal O. P. Anapproximate method for numerical solution of frac-
tional equations. J. Signal Process, vol. 86, 2602-2610, 2006.

[25] Miller K.S., Ross B. An Introduction to the Fractional Calculus and Differential
Equations, John Wiley, New York, 1993.

[26] Xiao-Jun Yang, Generalized Local Fractional Taylor’s Formula with Local Frac-
tional Derivative, Journal of Expert Systems. vol. 1, No. 1, 2012.

[27] Kincaid, D. and Cheney, W. Numerical Analysis, Mathematics of Scientific
Computing, Third Edition, and Wadsworth group Brooks/Cole. 2002.

[28] Rahiny, M. Applications of Fractional Differential Equations, Applied Mathemat-
ical Sciences, Vol.4, No.50, 2453 — 2461, 2010.

[29] Hamasalh F. K., Ali A. H. Stability Analysis of Some Fractional Differential
Equations by Special type of Spline Function, Journal of Zankoy Sulaimani,
Vol.19 (1) (Part-A), 2017.

[30] Zahra W.K., Elkholy S. M. Cubic Spline Solution of Fractional Bagley-Torvik
Equation, Electronic Journal of Mathematics Analysis and Applications, vol. 1
(2), pp. 230-241, 2013.

doyw il ddeldill filwo, Jal b— spline S, folSi dlla cldiwl D
LadAl
b-spline ala Jal &ail) bals Sllaa (ilad B s aaele ol b-spline x<s Laaanal dasill 138 =

el Anley Aayhll A (e ezl A Al L Adliae i) dpe)) bl oY el dal CaSdl Lals)
CoAeddl Aiphll (yles Jdat 8 GlS (gAY Adg jeall (3Ll

275



