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Abstract

Our article is for finding complete primitive for two different kinds of linear ordinary differential
equations in a spectral type. First kind is consisting of two different types of coefficients of order two;
one of them is polynomials, where as the other type is continuous functions and both are of real types.
The second kind is for a third order, and here the coefficients of this kind are also several real
polynomials, and in both kinds of spectral linear ordinary differential equations, the coefficients are
converted to the constants via varying the independent variable to a new one. We gave examples to
explain our mechanism.

Keywords: Order of differential equations, real functions and polynomials, complete primitive, variation
of variables.

1. Introduction

The second and third order linear ordinary differential equations (L.O.D.E) are
widely used of many problems in the distinct fields as: Engineering, mechanic, and ...
etc. The known methods like operator method, undetermined coefficients, reduction of
order and variation of parameters are studied to find the complete primitive of second
and third linear differential equations with constant and variable coefficients. The third
and second-order differential equations have been accurately inspected by many
authors. In [12] Moore, studied the behavior of their solutions, and their waverly
feature studied via Coppel [18], Marini [7], Hochtadt [3] and Hartman [9, 10]; and in
[6, 13, 16, 17] the study of the of limited and asymptotic behavior were considered,
finally in [15], Richard calculated the solutions numerically.

A lot of writers examined the asymptotic behavior for eigenvalues and identical
eigenfunctions to various kinds of cases for the spectral type [5, 14].

In [4], Karwan and Aryan studied the boundedness of non-zero solutions to the
spectral L.O.D.E. of second order. In [8], Marini and Zezza they studied asymptotically
formula of eigenfunctions L.D.E. of order two, further they specified needful and
appropriate terms to the integrals of their defined D.E.

In [11], Johnson, Busawon, and Barbot presented a substitutional procedure for
resolving the public non-homogeneous second order L.O.D.E.

In [2], Arficho derived a modern procedure for finding particular integral of
L.O.D.E. of order two by means of one given integral to the related homogeneous D.E.,
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further, he constructed another integral of the related homogeneous D.E. of this modern
procedure. Furthermore, he found complete integral of the defined L.O.D.E of order
two without using the known procedure for finding the particular integral.

In [1], Aryan constructed a complete integral to the L.O.D.E. of order n by the
procedure for variation of parameter, as well as, he determined the non-zero solutions
of second order spectral L.O.D.E. with eigenparameter dependent boundary conditions.
Moreover, he specified the limitedness of non-zero solutions. Finally, they studied the
asymptotically formula for eigenvalues to the defined D.E.

In this paper, we study the solution of the second and third order spectral L.O.D.E.
with variable coefficients in which the coefficients of the first one consist of two distinct
kinds, one of them are polynomials, where as the other kind are continuous functions
and both of them are of real types. However, the coefficients of third order are
polynomials of real type.

Firstly, we examine two types of spectral L.O.D.E. of order two of the forms:

d2
175+ (x) >+ () = Pag()y(),x € (a,b) (1)
and
2
3,00 T3+ () 2 = k(0. x € (@, D) @

where A # 0is a spectral parameter,a > 0,and a < b,and a;(x),i = 0,1,2, are
some real polynomials and a, (x) # 0, and k is non-zero arbitrary constant, provided
that y(x) and their derivatives are defined and continuous on the given interval. We
reduce equations (1) to an equation with constant coefficients by the substitution
y(x) = u(x) g(x) where

( 1.1 al(x) )
g(x) = e\ 2 a0
and u(x) is a new unknown function should be specified, and b is a constant.
Finally, we convert equation (2) to the spectral linear differential equation by making

a1(x)

change of variable t= fe_faoof) dx, to a form

d?y
1z + klzy(t) = 0.
Secondly, we investigate spectral L.O.D.E. of order three of the type
3 2

1) T2 + 0100 T2+ 4,00 Y = a0, x € (@,b) ©

where A # 0 is a spectral parameter,a > 0 and a < b, where a;(x),i = 0,1,2,3 are
some real polynomials and a,(x) # 0,Vx € (a, b). By making change of variable

s=k [ (a3(x)) dx, equation (3) may reduce to the constant coefficients.
Note: Throughout the paper, L.O.D.E. stands for linear ordinary differential equations.

2. Studying the different kinds of spectral L.O.D.E. of order two

In this section, we consider the spectral L.O.D.E. of order two with distinct types of
coefficients through two kinds of transformations, and examples are given to explain
our technique.

Theorem 1. The spectral differential equation of the form

dZ
Y +ay (x) >+ @ ()y() = 22a,()y(0), % € (a,b) (1)

a,(X) =5
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where 1, ay(x), a,(x) # 0 and a;(x),i = 0,1,2 are real polynomial functions, reduced
to an equation with constant coefficients by the substitution y(x) = u(x) g(x), where

al(x)

g(x) — e( X737 fa (x) ) Jif
(ﬁ _1 (al_(x)>> _ _< 4 () a(x) — a1(x)a (x)) i (x) = A = constant
4 2 '

4 ag(x) ag(x) ao(x)
where b is an arbitrary constant, and u(x) is a new unknown function to be
determined.
Proof: At the beginning we find the first and second derivative by above
substitutions.

d
2wy ) + 1 (g (x)

dx
dy 1 1 [a;(x) bax—2 fZl(;) , 1l le(i)
) 5
o (411 () 5
oz v\ e m)) ¢
+u( )( L4l Ex?(x)%(x)) (br-3 12 )
al(x) al(x)
I T
/ 1 1 /a;(x) bax—= le(i)d
+“@9Gz‘z<%u)>42 5,
2 a4 (x) 1.1 ;a:(x)
% — u//(x) e(b%x 2 fao(x)d )+ 2u'(x) <b%_% <Z(1)gg>) e(bzx— fa (x)d )+
11 .ay(x 2
u(x)e(bEX_E faogxg dx) (b%—% (ng))
0

1 <a;<x>ao ) -a (x)aaoo)
2

ag(x)

2
Setting Z—z and d—y in the given differential equation, yields

1 al(x) x 1 raq(x)
ao(x) (u"(x) e( 2772 fa ) ) + 2u' (x) (b——— <a1_(x)>> e<b7 ek )+

2 2 \ay(x)
(p-212Qa) (1 1 (@) 1({6®ae® - a@a®
u(x)e €9) b2 Avne 5 20 )
al(x) 1 1 qa;(x)
o 1) 58 550

a; (x) ay (x)

+ay(x) ux) e( 772 fa (x) ) A2 ay(x)u(x) e( 2°72 fa €9 )
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. . (blx—l fal—(x) dx) . T
Dividing both sides by ay(x) and e\ 2" 2 "a0® ™/ and after simplification we deduce

" I bZ ay (X) ai(x)ao(x) - a(x)af)(x) a, (X)
T bt <_"< (x))) 2< ) )*ao(x)

4
u(x) = 22 u(x).
2 ! - !
If <_ _1 (al(x))> - %(al(x)a"(’d a(x)a‘)(x)) +29 _ 4 = constant, then the last

4 \ag(x) ag(x) ao(x)
equation reduces to
u'(x)+bu'(x) + Au(x) = 12 u(x),
is a spectral L.O.D.E. with constant coefficients in variable u and x, therefore u(x)
can be found with known methods and hence the solution y(x) is specified from

y(x) = ux)g(x).

Example: Solve the spectral differential equation of the form
2

x2%+2x (x+2)3—3:+2 (x+1)%2y=x%22%y.

Solution: Comparing the given equation with our differential form
ao(x) " 32/ + a,(x) 3—36/ + a,(x)y = 22 ay(x)y, we get that:

ao(x) = x2,a,(x) = 2x(x + 2),a,(x) = 2(x + 1)?,

ap(x) = 2x,a;(x) = 4x + 4,a(x) = (2x? + 4x)?, a2 (x) = x*.

Now

g(x) = e(

(bx

a (x)
f al(x) )

2Lnx)

1 ( 2x +4-x ) X
bEx—= X fdx—2[x-1
2% —e f e(bz [dx-2[x"1dx)
X X
—e\V'2 2

Leth = 2,50 g(x) = x_2'
b> 1 (af(x) 1(ai(x)ag(x) —a;(x)ag(x)\ ax(x)
4 4 (a%(x)) _E< a3 (x) >+ ao(x)

_ (1 1 <4x4 +16x3 + 16x2>> 1 <((4x +4)x? — (2x% + 4x)2x)>
7 a 2

4 x% x4
(2x% +4x + 2)
+ 2
X
x* —x* —4x3 — 4x?\ 1 [—4x? N (2x% +4x + 2)
N x4 2\ x* x2
_ —Ax—4 2x*+4x+4  2x°
= 5 5 =2 = 2 = A = constant.
x X

Thus the equation u”'(x) + d u (x) + A u(x) = 22 u(x) becomes
u () +2u' (%) + 2u(x) = 22 u(x),
or
u" () +2u'(x)+ (@2 —2H) ulx) =0,
is a spectral L.O.D.E. of order two, so the complete integral with respect to the
variables u and x can be found as follows:

d
(D? 4+ 2D — (2 — 22))z(x) = 0,where D = o

or
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m?+2m+Q2-2*)=0,m=
m=-1++212-1.
u(x) = a; eVP-1-1)x 4 p o(-V22-1-1)x

Thereby we find y(x) from y(x) = u(x)g(x)
y(x) =x7? (a1 (VA2 -1-1)x 4 ble(—wlz—1—1)x)

—2F4-42-2) -—2F27-1
. _

2

)

where a, and b;are constants.

Example: Solve the following spectral D.E.

d d
x? £y_ x(3x + Z)d—i} + (2x% + 3x + 2)y = 1%x?y.

dx?
Solution: ag = x2,a; = —3x2? — 2x,a, = 2x% + 3x + 2,
ap = 2x,a; = —6x — 2,a? = (—3x? — 2x)?,a3(x) = x*.
Now,
oF _3x2-
900 = PP W) _ 053 1T e _ 0543 faxefxt an)
g(x) — e(d; +Ex+lnx)_
At b = —3,we have g(x) = e™ = x.
Therefore
b? 1 ( ai (x)> _ 1<a’1(x)ao(x) - al(x)ab(x)> L% (x)
4 a3 (x) 2 a3 (x) ao(x)
9 1/9x*+12x3 + 4x? 1(((—6x —2)x? — (—3x% — 2x)2x)
4 4 x4 2 x4
2x% + 3x + 2
xZ
—12x3 —4x?  1(2x*\ 2x*+3x+2 8x*
iyva— + 22 =4x4=2=A=constant.

Thus, the equation u”’ (x) + b u'(x) + A u(x) = A% u(x) reduces to
u(x) = 3u' (x) + 2u(x) = 12 u(x),

or

u"(x)=3u(x)+ 2 - 21 ulx) =0.

Thus the complete integral of the resultant equation can be found by:

(D? = 3D + (2 — 2%) z(x) = 0,where D = o
m?—3m+(2—- 2*) =0,

_3FJ9-4(2-2») \/1+4/12
- 2

3 \/1+4/1 ) <§_\/1+4/12>
+ cye z

3
2

z(x) = c3 e<
where c; and c, are arbitrary constants.

And since y = g(x)u(x), hence a complete integral to the given differential equation
IS

y(x) =x ( C3 e(3 \/1+ZT> + c4e<%_vl+zw>x>.
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Theorem 2. The spectral differential equation
d? d
Q@) 5+ m() =k y,x € (ab)

where A, a,(x) # 0 and a;(x),i = 0,1 are real valued continuous functions, can be
reduced to a form y"’ () — KA?y(t) = 0 by making the change of variable

= [ B g
1
ao(x)
=k, e_2

K = kl k
Proof: Consider the differential equation

d? d
ao(@ﬁ"‘ al(x)é =k A%y,

if

a; (x)
dx .
e ,where k; and k are arbitrary non zero constants, and

now,

aq(x) a;(x)
‘= fe‘fai(x) P x % o lam
X

aq(x)
dy dy dt e_fa;(x) dx d_y

dx  dtdx dt’
dzy d ( Z (%L gy dy) d ( _ ﬂdx)dy _ (%, d (dy) dt
e "% e "% +e "0 T —|=)—

dx? ~ dx dt dx dt de\dt/ dx

a;(x) —f%dx dy - a—dx d (dy) dt
= e 0 —+4 e 0

ao(x) dt de\dt/ dx
dz_y _ e—zfg—(l)dx dz_)’_ a; (x) e—fz—(l)dx d_y
dx? dt?  ay(x) dt

... dy ’y . . . o
Substituting Tx and Tz in the given differential equation, yields
2% gy d?y _ % gy dy — (% gy dy
a@) e Ha® S q e a2 pam e la ™ oy,
or
dzy 1 ) fal dx
—_—— a k22y =0.
dt? ao(x) ¢ ’ Y
-2 fﬂ dx . .

7 ( ) = ke "%  ,where k; isanon zero arbitrary constant, so the last

0
equation reduces to
dZ
W — K 22 y(x) = 0,where K = k, k,

Thus, the proof is finished.

Example: Consider the spectral Ordinary differential equation

Sin? 4x Y + 2sin 8x = 2%y.
Solution: a, = sin? 4x a; = 2sin 8x

a sin? 4x 4sin 4x cos 4x
—|J=—=dx S A _ (2221 A COS A
t = j e fao dx =J f251n8xd dx = f e J sin2 4x dx dx

17
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t = fe— [(sin4x)~1 (4 cos 4x) dx dx = f e-Insindx .. — f 1
sin 4x
= [ ———d
stiancost x
t_lfseCZZxd —1l tan2x]
2 ) tan2x x—4n ancxi;
or
t = - In tan2 !
— g R T Sindx
dy dy dt 1 dy
dx  dtdx  sindx dt’
d’y d ( 1 dy) _ —4cos4x dy+ 1 d*y 1
dx?2  dx \sindx dt) sin24x dt sindx dt? sindx’
d’y 1 d*?y 4cosdxdy
dx?  sinZ24x dt? sin24x dt
Since
sin? 4x y"(x) + 2sin8x y'(x) = 22 y(x),
then
d?y 4cos4x dy 1 dy

in? 4 —2 — sin2 + 2sin8 = = 22y(p),
s xsmz 4x dt? S X sin 4x dt sin8x sindx dt y(®)
@ 4 4dy+44 4 dy—/lz(t)
d22 cos xdt sindxcos4x pry o y(t),
dcy
—Z_ 22y() =0,
102 y(t)

Thus, the complete integral with respect to the variables y and t is:
m>—2?=0m=7%F A.

y(t) = cse 't + ¢ e A,

or

1 1
y(x) = c5 (tan2x)% + c4(tan2x) 4.

3. Solving spectral L.O.D.E. of order three

In the following theorem, we determine the complete integral of a defined spectral
L.O.D.E. of order three where its coefficients are some real polynomial.

Theorem 3. Consider the spectral ordinary differential equation

d
a, (x) Y +a, (x) 2+ ay(x) ﬁ = —23a3;(x)y, x € (a,b) (3)
where )\ ;t 0,a>0 and a < b, where a;(x),i = 0,1,2,3 are some real polynomials

and a,(x) # 0,Vx € (a, b). By making change of variable s =k f(af*Eg) dx,
ao

equation (3) may be reduced to the constant coefficients if

E ,
) = 1| 2y B0 (aﬁsﬁ) = hy(s)

a3(s)a3(s) 3( )
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1 1 [ a3 (s)ae(s) — az(s) as(s)

=22 (5 1
e @)
1 [ az(s)ag(s) + az(s) ag (s)
s
a3(s) )

2 2 8 1 2 2 ’
zaf;(S)(a;(S)) _2( ad(s) [ [as(s) a;,(s)ai(s) [as(s)
e 2 (G)) o G

a3 (s) a3 (s) a3(s)
1 a,(s) .
+—=| ————5— | ) = constant,where k is a non zero constant.

ai(s) a3(s)
Proof: We rewrite equation (3) as follows
a’y d’y dy | 13 —
ao(x)ﬁ+a1(x)ﬁ +a2(x)a+/1 asz(x)y = 0. 3)
We change the independent variable in equation (3) from x to s by using the chain

rule.
1

N . k f<a3(x)>§d )
ow, since s = X,
ao(x)
then
dy dy ds

(22,

dx  dsdx a,/ ds’

Ly _d(dny_d k(@)%d_y

dx?  dx \dx) dx a,/ ds/

22t (1)) Lok £ (2)

dx? d d
1
3 d

_k a >§ a3a0 as a, dy+k< > (dy)ds
B 3 " (a,)? ) ds a,/ ds\ds/dx

Juy

2 2
@_ (&) a3 do — 03 d_y+kz<@>§@
dx? a, (a,)? ds a,/ ds?’
d3y

~

&
N[

N~

&l &=
8|8

/-~ /
Q|Q
Q w
N—— N——
|
wlN

‘% as a, — as a, d—y+k( )3dy
(a,)? ds a,/ ds?
it —aadh) ) (o 0]
(a,)? ds dx a,/ ds?
ay

+
2
a; a, — as a, dy Kk k <a3>‘§ d (dy)
(a,)? ds 3 \a,/ dx\ds
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a; a, — as a, +k( ) (dy) d a3 a3 ag +k2d2y
(ay)? 3 \a, ds) dx\a, a,? ds?
2 <a3)‘% a; a, —as a, LK (a3>§ d (d*y\ ds
3 \a, (a,)? a,/ ds\ds?)dx’
5 2
d’y [ -2k <a3)‘§ as a, —az a,\ dy N k <a3)‘§ ds (d?y
dx3 \ 9 \a, (a,)? ds 3 \a, dx \ ds?
as a, — as a, N k (a3)‘§ (dy) ajg a, —az a,
@y )36, \as) @y
1
@ e a)(e) 2 g, by 2 (@) o a
(a0)4 dsz 3 aO (ao)z
1
as\3 d3y = /a3\3
() 20 (2)'
* a,/ ds3 \a,
After some minor algebraic operations, we get
1 ! 4
9 (1) (£2) e (22)F (0= )
dx3 a,/ \ds3 a, (a,)? ds?
2k (a3>‘g as a, —as ay\ dy N k <a3>‘% az a, —az ay\ dy
9 \a, (a,)? ds a, (a,)? ds

k <a3) 5 ((a3a0+a3a >dy 2k a3 -2 <a3 (a’0)2>dy
_y
! dx

3 \a, (a,)? ao (ap)? )ds
y

putting the expressions for d—y —— inequation (3), we get:
3 —-= 2
i () (52) 0 () (H5502%) 22
2k (a4 ‘g asa, —asza, \dy k as ‘% ajg a, —ajza,\ dy
@) (T )e s @ () &
k as - (aya, +asa)) \dy 2k as -4 as (a,)?\ dy
T3 % (a_> < (@,)? )ds ER (a_) < (@,)? )E

2 , , 1
+a15 (%)‘5 a3 ao — a3 o \ dy + K%a (a3)3 d? ay tka, (@)3 dy
3 \a, (a,)? ds a,) ds? a,/ ds

+A3%a;y =0,
or
4
d3y a3§ ad raz\' \d*y k aO% ay a, —aj a,
o | e (@) 3 (@) 1T s (G (P
%3 453 = a, 3 \a, s2 3 ( 3 a,
as
2 2 8
B (@)5 <a’3 a, + as a(’,’> ) (@)E <a3 (a{,)2> 2 a_g ((ﬁ)’)z
as o as (a,)? 3 % Ao
as
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2 1
Qo az\" 1 ( 3) 3 _
+a, (as) (ao) + 3 o ) + APa;y=0.

1
Multiplying the last equation by B , we obtain
3

! !

d3y N 1 a L (a3)’ d*y N 1 ( 1( a¥ a,—aja,
ds3 " k\ 2 1 %\a, ds? = 3k%* 2 3
aja; a; a; a;(s)
4 8
1 [aja,+asa) a3 (ap)? 2| al ( (a3 "\2
-5 1 2 3| 8 a_) )
3 3 3 3 o
a3 a’ a3 a3
2
a, ag a;\' 1| a, dy 23
=) += )=ty =
2 a, 3\ 12 ds k3
as ay a3
The last equation becomes
a3 d? dy
O h© T By =0
where
4
1[ a as ras\’
hl(s):_ 211+_2(_3) ’
K\ 5.3 3\
ap az Az
4
1 1 [af ao as a, 1 [(aja,+azal al (ap)?
ha(8) = 32 (5 1 i 1 R
a3 ai(s) a3 a’ a3
8 2
2 [ a as\'\>* a; a3 jaz\ 1[ a,
() ey @)
3\ 3 o 3 W/ 3\ 3 3
as as a4y Az

If h,(s) = h,(s) = constant, then the resultant equation become L.O.D.E. with
constant coefficients.

Example: Determine the complete integral to the following spectral D.E.

3 2
3x33—ﬁ +9x2 52 + 30 2 = —244%y.

Solution: 3x3 3 + 9x &y S+ 3x 2+ 242%y = 0. (5)
If we compare equatlon (5) Wlth equatlon (3), we get that:

ap, = 3x3,a; = 9x?,a, = 3x,and a; = 24.

Now

[EN

a3 § 1
s—kf dx—kf x=2kf—dx=2kln|x|+c.
3x3 x

Let x > 0, thus s = 2k Inx + c,and setting 2k = 1,and ¢ = 0,

dx
s = Inx,then x = e’ and T = eS.
S
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dy_dyds_(l)dy

dx  dsdx \eS)ds’

dz_yzi(d_y)zi (i)d_y s _1( _dy (1)@
dx? dx\dx ds\\eS/ds |dx es ds es)ds? )]’
d’y 1\ d% 1\dy

dx2 ~ \ezs) ds2  \e2s)ds

d’y d (d’y\ d ( ) d? ( 1 )dy ds

dx3  dx \dx2) ds \\e2s) ds2 e%s)ds |dx
[ d ( 1 ) d?y N d ( 1 )dy 1
“\ds \\e2s) ds2 | " ds e2s)ds | |es’

Ty _ (L)Cﬁ_y_ 2oLy L gpmas W _ s Y\ L
dx3 e?s) ds3 ds? ds ds? |es’

d3y_( 1 )d3y ( 3 )d2y+( 2 )dy

dx3  \e3s/ds3 \e3s/ds2  \e3s/)ds’

By placing the first, second, and third derivatives in the given differential equations,
we obtain:

1\d3y 3\ d?%y 2 \dy 1\ d?y 1\dy
36“((5)@‘(5)@*(5)% 9 | () &~ () %)+

1\dy
3e’ (—)— 2423y =0,
€ < e ds) + y

d®y _d*y _dy _dy 2y dy

2 322492 322 -2 22 3. —
ds3 ds? ds ds ds? + ds 810y =0,
d3y+8/‘13 =0

ds3 y=">u

which is a linear spectral ordinary equation of third order with constant equations in
variable y and s, hence the general solution is:

y(s) = c;e 724 + e (¢, cos V3 As + c3 sin /s As),
or
y(x) = cpe 2AMx 4 oA 1nx (¢, cosV/3 A Inx + ¢5 sin /s A Ilnx),

C

y(x) = % + x4 (cz cosV3 A lnx + c3 sinv/s A Inx ),
X

where ¢;, i = 1,2,3 are constants.

4. Conclusion
In this paper, we have presented some techniques for solving two types of spectral

linear ordinary differential equations which are second and third orders including two

distinct kinds of coefficients. The first one is several polynomials, while the other kind

is continuous functions and all these kinds are of real type. We have shown how these
kinds are converted to the constant coefficients by modifying the independent variable
to another one via the specified transformations. We brought examples to explain the

usefulness and applicability of our technique. The importance of this work is to opening

the way to use another techniques and ideas to solve other types of spectral linear

ordinary differential equations of higher order.
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