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Abstract

In this paper we introduce semi-normed difference operator triple sequence spaces by using a double
Orlicz-functions, so we study their different properties like completeness, solidity, monotonicity,
symmetricity etc.
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Introduction

Throughout this paper 23 a symbol for the family of all complex or real triple
sequences. Atriple sequences (complex or real) in [2][4] be a function from N X N X N
(natural numbers ) to (real or complex numbersR(C)), and we denote 3¢, all null spaces,
3c the spaces of convergent, 31,be a linear spaces

Some new results of triple sequences spaces would studied by a double Orlicz
functions using a function F where F = (F;(r), F;(w),let (x,y) = Xy, YVry;) be a
triple infinite array of elements.

Kizmaz [6] introduced single difference of single sequence space. We use this idea
to define difference of triple sequence spaces as following:

2) = {(x,)) € 2: (Ax, ) € 2},
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forQ =c,cy, lo, Where Ax,. = x, — x,,, forall r € N.

The differences double sequence (Ax, Ay) is defined by:

(Ax,Ay) = (Axr,w Ayr,u )??u:l-

Let 23(A, . j)the difference triple sequence spaces defined by :

Ar,u,j(xr,u,j): Xruj — *ru+tj — Xruj+1 + X ru+1,j+1 — X14rul+j— x1+r,1+u,j+

X14ru1+) ~ X14ru1+j T X 141,140, 14

In this paper we introduced the vector-valued triple sequence spaces by a double
Orlicz-functions F where F(x,y) = (F;(x), F,(y)) over semi-normed space (X2, q)
semi-normed by g, and construct some important properties of triple sequence spaces by
a function F.

Maysoon [7] and Zainab [3] defined the N-function as follows:

Definition .1.1[3]. The double Orlicz functions is afunction
F:[0,00) X [0,0) —:[0,0) X [0,) such that F(u,v) = (F;(uw),F,(v))
F;:[0,00) » [0,0) and: F, [0,00) > [0,0),

such that F;,F, are Orlicz functions which are ,convex, non—decreasing ,even ,
continuous, and satisfies the four conditions :

i) F,(0) = 0,F,(0) = 0 - F(0,0) = (F,(0),F,(0))

i) F, (W) >0,F, (v) >0 - Fu,v) = (F (W), ) > (0,0) foru>0,
v > 0,we mean that byF(u,v) > (0,0) that F;(w) > 0,F,(v) > 0

iii) F;(u) > 00, F,(v) » 0 as u,v — oo then

F(u,v) = (F(w),F,)) - (0,00 )as (u,v) - (0, 0)we mean by

F(u,v) - (00,0), thatF, (1) — o, Fy(v) > .

Definition.2.1. Atriple sequence spaces 2° is called solidary if (@, jXy jBru jVru;) €
23 whenever (x,, i Yruj) € 23 for all triple sequence (a;,, jBra,;) of scalars
With @, ;| < 1| Bry,j| < 1 and consequently |(a,, j,Br . ;)I< 1, forall r,u and j € N.

Definition.3.1. Atriple sequence space 23 is called monotone if it consists of the
canonical- pre—images of all its step space.
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Definition.4.1. Atriple sequence spaces 2° is called symmetric if (x,,, j, yru ;) € 2°
implies (X () w) () Yeyram()) € 2° where m is a permutation of N.

Definition5.1. Let F be a double Orlicz-functions , ¢ = o is real numbers and p =
(pru,;) be afactorable triple sequence of positive real .

Definition6.1. Let F be a double Orlicz functions which satisfies A, —condition and let
0 < & < 1, then for each x > 8,y > & we have F(x,y) < k(x,y) 5 F(2) for some
constant k > 0.

Now we define difference operator triple sequence spaces 3l., 3¢, 3¢, 0n asemi-normed
space(X?, q) seminormed by g by F as following:

xmu_ll |

, N — AY
3CLF. P 0. @) = | (x,7) €0% ¢ p—limyuy ()@ | (Fy (PE2=E0]))

v o Drou,j
(Fz ()) ] =0, for someld; @, €C,9p=0,p >0 },Where

(F1 ()) = 0and (Fz ()) =0.

AU Ty Uy
LEREN

3o (B0 Fp.0,0) = | (1) € 0% ~limy 0 ()™ | <F1< .

and (F2 (ULRY B | 3; ')) = 0.

And :
38, (A% .F,p,9,9) ={ (x,y) €

3. N\ —@ CI|AITJI x"ﬂ“ | qlA?i'}l y"ml | ]
0°:sup ,, ., B(rwj) [ <F1 (—p ) F, (—p )

< oo, for somep > 0,l;,l, eCand o =0 },Where<F1 ()) < oo, and

[ (252 <o

DPru,j
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By meaning of Mursuleen[5],we can defined difference operator triple sequence
spaces 3l.,3c,3c, ona semi—normed (X2, q) semi-normed by g as follows:

30,(AF,q) = { (x,y) € 23:sup,,., l ( F (—qlAt'"'l)> <Fz (—qmy;“' l))

oo, for some p >0 },Where ( F, ( QIA?,I)> < oo and (Fz (qlAaz,,‘, I)> < ©

_ 3., 1 q1A%.,81\ | qlAy.,.2 | _
3co(AF,q) —{ (x,y)€ER>:p T,JL}}EW I<F1(—p ))(Fz (—p ))l =
qlel‘mv| _ qlAyrm’ | —
0,forsome p > 0 },Where <F1 ( . )> =0 ,and<F2 (—p )) = 0.

And:

<

3c(AF,q) =

3. - i P q|Aymu_lz | _
0, for some l;,1, € C p > 0 ¢where| F; = 0and(F, —0
) 0 ;

also ,by Asma [1] we can defined difference operator  triple sequence
spaces 31, 3¢, 3¢, on asemi-normed (X2, g)semi—normed by q, as follows :

q|8,,.,BAx,,,3|

308,(B, A F,q) ={ (x,y) €23 supm,,[ (Fl( T)) (Fy(

)<=

for some p >0 }

q |, BAY L.,
p

)

3c (@,AF,q) =

(oy)emp— lim | (F (U2ezetotl) ) g (g, @latevmtitly ) |

T,U,j—-00

0, for some l;,l, €C,p >0
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q|8,,,B AKX, B

3¢, (B ,A,F,q)={(x,y)erz3:p— lim (Fl( )) (Fz (

r,u,j—00

q|8,.,,BAY.,8]

. ) ) ] =0 for somep >0 ¢, where Bl = (H,, ;) be atriple sequence.

2. Main Results.

Proposition.2.2. Let F = (F;, F,)be a double Orlicz-functions satisfy the A,_conditions,
then

) 23(F,,0,q) € 03(F,,A,q) for 23 =3l,,3c,3¢ ifF, (x,y) < Fy (x,9)
V(x,y) € [0,0) X [0, ).

ii) 23(F,,A,q) € 23(F ° Fy, A, q) for 23 =31,,3¢,3c .
Proof. (i) The proof is obvious.
(ii) Consider 23 = 3¢ . Let (x,y) € 3¢c(A,F;,q) .
Then for some p > 0,
3c(AF,q) =

. . AR 1Ay, B—1 |
{(x'J’)EQS-P—r'Ll’jILlOO[Fl(CI(—p )>F2<q(—p ))l

=0 forsomep >0 } ,Where

|Aleul - lll H
Fi | q T - 0,asr,u,j— o

A Vrtli_l
F, (q<|yp—2|>>_)()a5r,u,j—>oo_

By (i) we get [F (x,y) < F; (x,y)].
Then F [ F, (q (_le,,,,,—zﬂ)) ] - 0,asr,u,j— oo.
p
|Ax,~, w lll .
(F°Fy| q T - 0,as r,u,j - oo.

Hence (x,y) € 23(F ° Fy,A,q). We can be proved the spaces 31, 3¢, by a similar
way.
This complete the prove.
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Theorem2.3.The space 23(A%, F, p, q, ) are paranormed space , paranormed by
g(x' Y) = Z;r,lﬁl:}q:l |xr,u,j + yr,u,jl

+
. Pruj Ax,,,0 AYy,,,B
lnf{pH supru][F1<q(| J;I))Fzr<q()>]§1},

where H = max (1, sup;,, jpra,), and 2° = 3ly, 3¢, 3c.

Proof. ~ We prove this theorem for the space 3, (A}, F,p,q,@)and the spaces
3¢y, 3¢ proved with a similar way.

Clearly g(—x) = g(x),g(=y) = g(y),

let (x,,;)and (yr,u, j) be any two triple sequences belong to any one of the spaces
N3(AY,F,P,q, ), for 23 =3l,,3c and 3¢, .Then we have p,,p, > 0 such that

CIIAZ xr,u,jl
SUpy,iF1 —p <1
1

And
Q|A1771 yr,u,jl

2
Let p = p; + p,.Then by convexity of F ,we have

QIAZ(xr,u,j + yr,u,j)l P1 qmlr’lxr,u,jl
Supy,iF < ) < (m) Supy,jFi T

P2 qlAnYru;l
+( )Sup iF. <— <1
P11+ P2 rt P1

Supr,u,jFZ( ) <1

Hence we have

m,n
. Pruj QIAZ (xr,u,j + YT,u,j)l
g(x + y) = |xr,u,j + yr,u,jl + lnf{p H :Supr,u,jF( ) < 1}
ru,j p
m\n |Av |
. Pru,j q X u,j
Z |xr,u,j| + lnf{pl H :Supr,u,jFl(n—ru])}
ru,j=1 P1
m,l,n |Av |
. Pruj q y
+ 0 g+ inflor " Sup Fa (0 < 1)
ru,j=1

This implies that

glx+y) <g(x) +g0).
The continuity of the scalar multiplication follows from the following inequality:
gQk'x) = { ST | + inflp, s Supyy iy (A 2ell)
T 1
m Ln

al8n K1Yyl
ru] 1|kyruj|+1nf{p2 H Supru]F (nT]) }Sl

143



Journal of University of Babylon for Pure and Applied Sciences, Vol. (28), No. (1): 2020

p
= |k'| g |xr,u,,-| + inf{(T|K'|) 7"

ru,j=1

ql8n Xyl 1
Fy (T nell) s S [ g] +

alan Yraujl
inf (IR s Supy gy (222220 {1

Hence the spaces 23(AY, F, p, q, @) for 23 = 31, 3c,and 3c are paranormed spaces.

Theorem.2.4.Suppose a semi—normed space (X2, q) which is complete,where
13 = 3l,,3c, 3¢, are complete semi—normed spaces semi—normed by

. q|a” Xy, q|a? Yrujl
o(x,y) =inf {P > 0:supr,u_j [ F, (Tj) F, (T’) ] <1 } , Where

AV Xy i Av i
F1 (CI| r,u,/|) <1 , and Fz (‘” Yr,u,j|) <1.
P1 P1

Proof.
Let (xri',u,j!yri',u,j ) be any triple Cauchy sequence in 38, (AY,F ,q) where x' , y! is a
Cauchy sequence, such that (x;',u_j) and (y;'_u_j) be a triple Cauchy sequence in
304 (AY,F;,q) , 308 (AY,F,, q )respectively

Let fixed numbers m,, m, > 0, then for all

> 0, 3 a positive integers N such that

mim;
(Ixt = x"pay 1y =y llaz) <—— forall i,t =N ,also form, >
mim,

mim;

0, choose F( )=1

Using the definition of seminorm , we have ,

q|AY, x%,,,8 —AYxt,,,B | qlagyi,.e—azyt,.m ] ] mlmz
su ; F - F .
[ pr,u,] [ ( 1 ( (p(x,y)(xl_xt) ) ) ( 2 ( <P(x,y)(yl—yt) ) )

forall i,t > N, where

[ suppay |9 CF BHEZEiat )y | < p (Tame),

xy)(xt=xt)
|83 yi .8 -3,
[q (Fa ( ;’/(x, @i-y y )) ] ] m1m2 [ SUPrwj
So,
q [ (F, (|An xml)(i,ll xt,, ))'(Fz (|AnZYrul (j;y ) )) ] <1 such that

|Anx B —AY xml|
Pay)(xi-x

|A"yi‘ —AZyt el
. F n. iy - n oy ] S
) ) ( 2 ( (p(x,y)(yl_yt) ) )

Q[(Fl(
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mim;

a| & @) e, @) |21
The implies that

(7} v.,.t [/ | vt |
|(Auxr;u; _Aux r;u;vAuy r;u; _Au r;u;) S

1 1 .
S Mamy X €= € ,forall r,u and j we get

mym;
v o0 vt v ., vt | € :
| Ap X'y —AnXtraj ,Anyr'u'j — ALy ruy | S E,foralll,t >N.

Hence (A”=x},;) . (AYy.,;) are triple Cauchy sequence in R such that
(Dhxr., A% y1,, ;) atriple Cauchy sequence in R x R x R, such that

(Ax' ) (A”yiruj) are triple Cauchy sequence in 3@, (A%, F;,q) and

304 (A}, F;,q). Therefore each 0 < € < 1),there exist a positive integer N such that

|(A” xL . — A”xﬁ’u’j ,A"y;"u_j —AY yf_u_j) |<E foralli,t =N

ru,j

Now ,using the continuity of F; , F, foreach r,u we get:

A% ylrnz,_tllrglo A% ylrm,

AY, X"w"}l‘& A
Suprajo | 4| (P (B YA, (——— N =1
Thus
| A‘l?]l ir'“'_A;;'l rm; | | Ayl ir.u,—A% rm, |
SUpry o | @ | (Fy (—E2eEtinnl Ly i, (EeDotired | | <

Taking infimum of p* we have

| A% xi,,, ;A%x ,,,,, |)) (7, ( | az, yi,.,u,;A‘,’1 Y0 |

inf { p>0: [ SUPru jeN q[ (F1 ( ))

]] <1 }SeforalliZNandtﬁoo

Since (x,y') € 3B,(A%,F,q)and F;, F, be an a double Orlicz functions , then

F-(F;, F, ) isan adouble Orlicz functions for each r,u and by continuous , we get that
(x,y) €38, (A}, ,F,q)is linear .Then 38, (A}, F, q) isseminorm.

The rest of proof 3¢, 3¢, is like the previous case 3l.
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