Semi-Normed Difference Operator Triple Sequence Spaces Defined by a Double OrliczFunctions

Ali Hussein Battor

Dalael Saad Abdulzahra

Department of Mathematic, Factually of Education For Girls, Iraq

Dalael20175@gmail.com

ARTICLE INFO

Submission date: 16/9/2019 **Acceptance date**: 22/12/2019 **Publication date**: 31/3/2020

Abstract

In this paper we introduce semi-normed difference operator triple sequence spaces by using a double Orlicz-functions, so we study their different properties like completeness, solidity, monotonicity, symmetricity etc.

Key words. Double Orlicz-functions, difference spaces, Triple sequences.

Introduction

Throughout this paper Ω^3 a symbol for the family of all complex or real triple sequences. Atriple sequences (complex or real) in [2][4] be a function from $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ (natural numbers) to (real or complex numbers $\mathbb{R}(\mathbb{C})$), and we denote $3c_0$ all null spaces, 3c the spaces of convergent, $3l_\infty$ be a linear spaces

Some new results of triple sequences spaces would studied by a double Orlicz functions using a function F where $F = (F_1(r), F_2(u))$, let $(x, y) = (x_{r,u,j}, y_{r,u,j})$ be a triple infinite array of elements.

Kizmaz [6] introduced single difference of single sequence space. We use this idea to define difference of triple sequence spaces as following:

$$\Omega(\Delta) = \{ (x_r) \in \Omega : (\Delta x_r) \in \Omega \},$$

© Journal of University of Babylon for Pure and Applied Sciences (JUBPAS) by University of Babylon is licensed under a Creative Commons Attribution 4. 0 International License, 2020.

for
$$\Omega = c$$
, c_0 , l_{∞} , where $\Delta x_r = x_r - x_{r+1}$ for all $r \in \mathbb{N}$.

The differences double sequence $(\Delta x, \Delta y)$ is defined by:

$$(\Delta x, \Delta y) = (\Delta x_{r,u}, \Delta y_{r,u})_{r,u=1}^{\infty}.$$

Let $\Omega^3(\Delta_{r,u,i})$ the difference triple sequence spaces defined by :

$$\Delta_{r,u,j}(x_{r,u,j}) = x_{r,u,j} - x_{r,u+1,j} - x_{r,u,j+1} + x_{r,u+1,j+1} - x_{1+r,u,1+j} - x_{1+r,1+u,j} + x_{1+r,u,1+j} - x_{1+r,u,1+j} + x_{1+r,1+u,1+j}$$

In this paper we introduced the vector-valued triple sequence spaces by a double Orlicz-functions F where $F(x,y) = (F_1(x), F_2(y))$ over semi-normed space (X^2,q) semi-normed by q, and construct some important properties of triple sequence spaces by a function F.

Maysoon [7] and Zainab [3] defined the N-function as follows:

Definition .1.1[3]. The double Orlicz functions is afunction

$$F: [0, \infty) \times [0, \infty) \rightarrow: [0, \infty) \times [0, \infty)$$
 such that $F(u, v) = (F_1(u), F_2(v))$

$$F_1: [0, \infty) \rightarrow [0, \infty) \ and: F_2[0, \infty) \rightarrow [0, \infty),$$

such that F_1 , F_2 are Orlicz functions which are ,convex, non-decreasing ,even , continuous, and satisfies the four conditions :

$$i) F_1(0) = 0, F_2(0) = 0 \rightarrow F(0,0) = (F_1(0), F_2(0))$$

$$ii) F_1(u) > 0$$
, $F_2(v) > 0 \rightarrow F(u, v) = (F_1(u), (F_2(v)) > (0,0) for u > 0$,

v>0 , we mean that $\mbox{by} F(\,u,v)>(0,\!0)\,$ that $F_1(u)>0$, $F_2(v)>0$

$$iii) \ F_1(u) \to \infty \ , F_2(v) \to \infty \ as \ u \ , v \ \to \infty \ then$$

$$F(u,v) = (F_1(u), F_2(v)) \rightarrow (\infty, \infty) as (u,v) \rightarrow (\infty, \infty) we mean by$$

$$F(u, v) \to (\infty, \infty), that F_1(u) \to \infty, F_2(v) \to \infty.$$

Definition.2.1. Atriple sequence spaces Ω^3 is called solidary if $(\alpha_{r,u,j}x_{r,u,j},\beta_{r,u,j}y_{r,u,j}) \in \Omega^3$ whenever $(x_{r,u,j},y_{r,u,j}) \in \Omega^3$ for all triple sequence $(\alpha_{r,u,j},\beta_{r,u,j})$ of scalars with $|\alpha_{r,u,j}| \leq 1$, $|\beta_{r,u,j}| \leq 1$ and consequently $|(\alpha_{r,u,j},\beta_{r,u,j})| \leq 1$, for all r,u and $j \in \mathbb{N}$.

Definition.3.1. Atriple sequence space Ω^3 is called monotone if it consists of the canonical- pre—images of all its step space.

Definition.4.1. Atriple sequence spaces Ω^3 is called symmetric if $(x_{r,u,j}, y_{r,u,j}) \in \Omega^3$ implies $(x_{\pi(r),\pi(u),\pi(j)}, y_{\pi(r),\pi(u),\pi(j)}) \in \Omega^3$, where π is a permutation of \mathbb{N} .

Definition 5.1. Let F be a double Orlicz-functions, $\varphi \ge o$ is real numbers and $p = (p_{r,u,j})$ be a factorable triple sequence of positive real.

Definition 6.1. Let F be a double Orlicz functions which satisfies Δ_2 —condition and let $0 < \delta < 1$, then for each $x \ge \delta$, $y \ge \delta$ we have $F(x,y) < k(x,y) \frac{1}{\delta} F(2)$ for some constant k > 0.

Now we define difference operator triple sequence spaces $3l_{\infty}$, 3c, $3c_0$ on asemi-normed space (X^2,q) seminormed by q by F as following:

$$\begin{split} &3c(\Delta_n^v,F,p,\varphi,q)=\left\{\;(\;x\;,y\;)\in\Omega^3:\;p-lim_{r,u,j\to\infty}\;(ruj)^{-\varphi}\left[\;\left(F_1\left(\frac{q|\Delta_n^v\;x_{ru,}\mathbb{Z}-l_1\;|}{\rho}\right)\right)\;\mathbb{Z}\right.\\ &\left.\left(F_2\left(\frac{q|\Delta_u^v\;y_{ru,}\mathbb{Z}-l_2\;|}{\rho}\right)\right)\;\right]^{p_{r,u,j}}=0\;,for\;some\,\mathbb{Z}_1,\mathbb{Z}_2\;\in\mathbb{C},\varphi\geq0,\rho>0\;\right\},\\ &\left(F_1\left(\frac{q|\Delta_n^v\;x_{ru,}\mathbb{Z}-l_1\;|}{\rho}\right)\right)=0\;\text{and}\;\left(F_2\left(\frac{q|\Delta_u^v\;y_{ru,}\mathbb{Z}-l_2\;|}{\rho}\right)\right)=0.\\ &3c_0\left(\Delta_n^v,F,p,\varphi,q\right)=\left\{\;(x,y\;)\in\Omega^3:p-lim_{r,u,j\to\infty}(ruj)^{-\varphi}\left[\;\left(F_1\left(\frac{q|\Delta_n^v\;x_{r,u,}\mathbb{Z}^-|}{\rho}\right)\right)\right]^{p_{r,u,j}}\right.\\ &\left.\left(F_2\left(\frac{q|\Delta_n^v\;y_{ru,}\mathbb{Z}^-|}{\rho}\right)\right)\right]^{p_{r,u,j}}=0\;for\;some\,\rho>0\;,\varphi\geq0\;\right\},\;\;\text{where}\left(F_1\left(\frac{q|\Delta_n^v\;x_{ru,}\mathbb{Z}^-|}{\rho}\right)\right)=0\;,\\ &\text{and}\;\left(F_2\left(\frac{q|\Delta_n^v\;y_{ru,}\mathbb{Z}^-|}{\rho}\right)\right)=0. \end{split}$$

And:

$$\begin{split} &3\mathbb{P}_{\infty}(\Delta_{n}^{v},F,p,\varphi,q)=\left\{ \ (x,y \) \in \\ &\Omega^{3}: sup_{r,u},\mathbb{P}(ruj)^{-\varphi}\left[\ \left(F_{1}\left(\frac{q|\Delta_{n}^{v}x_{r,u}\mathbb{P}|}{\rho}\right)\right)\mathbb{P}\left(F_{2}\left(\frac{q|\Delta_{n}^{v}y_{r,u}\mathbb{P}|}{\rho}\right)\right)\right]^{p_{r,u,j}} \\ &<\infty, for\ some\ \rho>0, l_{1}, l_{2}\in\mathbb{C}\ and\ \varphi\geq0 \ \ \right\}, \\ &\text{where}\bigg(F_{1}\left(\frac{q|\Delta_{n}^{v}x_{r,u}\mathbb{P}|}{\rho}\right)\bigg)<\infty, \ \text{and} \\ &\left(F_{2}\left(\frac{q|\Delta_{n}^{v}y_{r,u}\mathbb{P}|}{\rho}\right)\right)<\infty. \end{split}$$

By meaning of Mursuleen[5], we can defined difference operator triple sequence spaces $3l_{\infty}$, 3c, $3c_0$ on a semi-normed (X^2, q) semi-normed by q as follows:

$$3\mathbb{Z}_{\infty}(\Delta, F, q) = \left\{ (x, y) \in \Omega^{3} : sup_{r, u_{r}} \mathbb{Z}\left[\left(F_{1}\left(\frac{q|\Delta x_{r,u_{r}}\mathbb{Z}|}{\rho}\right)\right)\mathbb{Z}\left(F_{2}\left(\frac{q|\Delta y_{r,u_{r}}\mathbb{Z}|}{\rho}\right)\right)\right] < \infty, for some \ \rho > 0 \right\}, \text{where} \left(F_{1}\left(\frac{q|\Delta x_{r,u_{r}}\mathbb{Z}|}{\rho}\right)\right) < \infty \text{ and} \left(F_{2}\left(\frac{q|\Delta y_{r,u_{r}}\mathbb{Z}|}{\rho}\right)\right) < \infty.$$

$$3c_{0}(\Delta, F, q) = \left\{ (x, y) \in \Omega^{3} : p - \lim_{r, u, j \to \infty} \left[\left(F_{1}\left(\frac{q | \Delta x_{r, u, \mathbb{Z}}|}{\rho}\right) \right) \mathbb{Z}\left(F_{2}\left(\frac{q | \Delta y_{r, u, \mathbb{Z}}|}{\rho}\right) \right) \right] = 0, \text{ for some } \rho > 0 \right\}, \text{ where } \left(F_{1}\left(\frac{q | \Delta x_{r, u, \mathbb{Z}}|}{\rho}\right) \right) = 0, \text{ and } \left(F_{2}\left(\frac{q | \Delta y_{r, u, \mathbb{Z}}|}{\rho}\right) \right) = 0.$$

And:

$$\begin{split} &3c\left(\Delta,F,q\right)=\\ &\left\{\begin{array}{l} \left(\left.x,y\right.\right)\in\varOmega^{3}:p-\lim_{r,u,j\to\infty}\;\left[\left(\left.F_{1}\left(\frac{q\left|\Delta x_{r,u}\right|^{2}-l_{1}\right|}{\rho}\right)\right)\mathbb{Z}\left(F_{2}\left(\frac{q\left|\Delta y_{r,u}\right|^{2}-l_{2}\right|}{\rho}\right)\right)\right]=\\ &0,for\;some\;l_{1},l_{2}\in\mathbb{C}\;\text{,}\rho\;>0 \\ &\text{,} \text{where} \left(\left.F_{1}\left(\frac{q\left|\Delta x_{r,u}\right|^{2}-l_{1}\right|}{\rho}\right)\right)=0\;a\;\mathrm{nd}\left(F_{2}\left(\frac{q\left|\Delta y_{r,u}\right|^{2}-l_{2}\right|}{\rho}\right)\right)=0 \end{split}$$

also ,by Asma [1] we can defined difference operator triple sequence spaces $3l_{\infty}$, 3c, $3c_0$ on asemi-normed (X^2,q) semi-normed by q, as follows:

$$3\mathbb{P}_{\infty}(\mathbb{P}, \Delta, F, q) = \left\{ (x, y) \in \Omega^{3} : sup_{r, u}, \mathbb{P}\left[\left(F_{1} \left(\frac{q | \mathbb{P}_{r, u}, \mathbb{P} \Delta x_{r, u}, \mathbb{P}}{\rho} \right) \right) \mathbb{P}\left(F_{2} \left(\frac{q | \mathbb{P}_{r, u}, \mathbb{P} \Delta y_{r, u}, \mathbb{P}}{\rho} \right) \right) \right] < \infty,$$

for some $\rho > 0$

$$3c(2, \Delta, F, q) =$$

$$\left\{ (x,y) \in \Omega^3: p - \lim_{r,u,j \to \infty} \left[\left(F_1 \left(\frac{q \left[\mathbb{Z}_{r,u,} \mathbb{Z} \triangle x_{r,u,} \mathbb{Z} - l_1 \right]}{\rho} \right) \right) \mathbb{Z} \left(F_2 \left(\frac{q \left[\mathbb{Z}_{r,u,} \mathbb{Z} \triangle y_{r,u,} \mathbb{Z} - l_2 \right]}{\rho} \right) \right) \right] = 0$$

$$0, for some \ l_1, l_2 \in \mathbb{C}, \rho > 0$$

$$3c_0 \quad (\mathbb{Z} \quad , \Delta, F, q) = \left\{ (x, y) \in \Omega^3 : p - \lim_{r, u, j \to \infty} \left[\left(F_1 \left(\frac{q | \mathbb{Z}_{r,u}, \mathbb{Z} \Delta x_{r,u}, \mathbb{Z}}{\rho} \right) \right) \right] = 0 \text{ for some } p > 0 \right\}, \text{ where } \mathbb{Z} = (\mathbb{Z}_{r,u,j}) \text{ be a triple sequence.}$$

2. Main Results.

Proposition.2.2. Let $F = (F_1, F_2)$ be a double Orlicz-functions satisfy the Δ_2 -conditions, then

$$i) \ \varOmega^3 \big(F_2 \, , \Delta, q \big) \subset \varOmega^3 \big(F_1 \, , \Delta, q \big) \ \text{ for } \ \varOmega^3 = 3l_\infty, 3c \, , 3c_0 \text{ if } F_2 \, (x,y) \leq F_1 \, (x,y)$$

 $\forall (x,y) \in [0,\infty) \times [0,\infty).$

ii)
$$\Omega^3(F_1, \Delta, q) \subset \Omega^3(F \circ F_1, \Delta, q)$$
 for $\Omega^3 = 3l_{\infty}, 3c_0$.

Proof. (i) The proof is obvious.

(ii) Consider
$$\Omega^3 = 3c$$
 . Let $(x, y) \in 3c(\Delta, F_1, q)$.

Then for some $\rho > 0$,

$$3c(\Delta, F, q) =$$

$$\left\{\;(\,x,y\,)\in\Omega^3:p-\lim_{r,u,\mathbf{j}\to\infty}\left[F_1\left(\,q\left(\frac{|\Delta x_{r,u}\mathbb{Z}-l_1|}{\rho}\right)\right)\mathbb{Z}\,F_2\left(\,q\left(\frac{|\Delta y_{r,u}\mathbb{Z}-l_2|}{\rho}\right)\right)\right]$$

$$= 0 \text{ for some } \rho > 0$$
 , where

$$F_1\left(q\left(\frac{|\Delta x_{r,u}, \mathbb{Z}-l_1|}{\rho}\right)\right) \to 0$$
, as $r, u, j \to \infty$

$$F_2\left(q\left(\frac{|\Delta y_{r,u} ?? - l_2|}{\rho}\right)\right) \to 0 \text{ as } r, u, j \to \infty.$$

By (i) we get $[F(x,y) \le F_1(x,y)]$.

Then
$$F\left[F_1\left(q\left(\frac{|\Delta x_{r,u}, \mathbb{Z}-l_1|}{\rho}\right)\right)\right] \to 0$$
, as $r, u, j \to \infty$.

$$(F \circ F_1) \left(q \left(\frac{|\Delta x_{r,u}, 2 - l_1|}{\rho} \right) \right) \to 0 , as \ r, u, j \to \infty.$$

Hence $(x, y) \in \Omega^3(F \circ F_1, \Delta, q)$. We can be proved the spaces $3l_\infty, 3c_0$ by a similar way.

This complete the prove.

Theorem2.3. The space $\Omega^3(\Delta_n^{\nu}, F, p, q, \varphi)$ are paranormed space, paranormed by

$$g(x,y) = \sum_{r,u,j=1}^{m,l,n} |x_{r,u,j} + y_{r,u,j}| +$$

$$\inf\left\{\left.\rho^{\frac{p_{r,u,j}}{H}}: sup_{r,u,j}\left[\right. F_1\left(\left.q\left(\frac{|\Delta^{\nu}x_{r,u,}\square|}{\rho}\right)\right) \square F_2{}_r\left(\left.q\left(\frac{|\Delta^{\nu}y_{r,u,}\square|}{\rho}\right)\right)\right.\right] \leq 1\right.\right\},$$

where $H = max (1, sup_{r,u,j}p_{r,u,j})$, and $\Omega^3 = 3l_{\infty}, 3c, 3c_0$.

Proof. We prove this theorem for the space $3l_{\infty}(\Delta_u^v, F, p, q, \varphi)$ and the spaces $3c_0, 3c$ proved with a similar way.

Clearly g(-x) = g(x), g(-y) = g(y),

let $(x_{r,u,j})$ and $(y_{r,u,j})$ be any two triple sequences belong to any one of the spaces $\Omega^3(\Delta_n^v, F, P, q, \varphi)$, for $\Omega^3 = 3l_\infty$, 3c and $3c_0$. Then we have $\rho_1, \rho_2 > 0$ such that

$$sup_{r,u,j}F_1\left(\frac{q|\Delta_n^v|x_{r,u,j}|}{\rho_1}\right) \le 1$$

And

$$sup_{r,u,j}F_2(\frac{q|\Delta_n^v|y_{r,u,j}|}{\rho_2}) \le 1$$

Let $\rho = \rho_1 + \rho_2$. Then by convexity of F, we have

$$sup_{r,u,j}F\left(\frac{q|\Delta_n^v(x_{r,u,j}+y_{r,u,j})|}{\rho}\right) \leq \left(\frac{\rho_1}{\rho_1+\rho_2}\right)Sup_{r,u,j}F_1\left(\frac{q|\Delta_n^vx_{r,u,j}|}{\rho_1}\right) + \left(\frac{\rho_2}{\rho_1+\rho_2}\right)Sup_{r,u,j}F_2\left(\frac{q|\Delta_n^vy_{r,u,j}|}{\rho_1}\right) \leq 1.$$

Hence we have

$$g(x+y) = \sum_{r,u,j}^{m,l,n} |x_{r,u,j} + y_{r,u,j}| + \inf\{\rho^{\frac{p_{r,u,j}}{H}} : Sup_{r,u,j} F(\frac{q|\Delta_n^{\nu} (x_{r,u,j} + y_{r,u,j})|}{\rho}) \le 1\}$$

$$\leq \sum_{r,u,j=1}^{m,l,n} |x_{r,u,j}| + \inf\{\rho_1^{\frac{p_{r,u,j}}{H}} : Sup_{r,u,j} F_1(\frac{q|\Delta_n^{\nu} x_{r,u,j}|}{\rho_1})\}$$

$$+ \sum_{r,u,j=1}^{m,l,n} |y_{r,u,j}| + \inf\{\rho_1^{\frac{p_{r,u,j}}{H}} : Sup_{r,u,j} F_2(\frac{q|\Delta_n^{\nu} y_{r,u,j}|}{\rho_2}) \le 1\}$$

This implies that

$$g(x+y) \le g(x) + g(y).$$

The continuity of the scalar multiplication follows from the following inequality:

$$g(k'x) = \left\{ \sum_{r,u,j=1}^{m,l,n} |k'^{x_{r,u,j}}| + \inf\{\rho_1^{\frac{p_{r,u,j}}{H}} : Sup_{r,u,j}F_1\left(\frac{q|\Delta_n^{\nu} k'^{x_{r,u,j}}|}{\rho_1}\right) + \sum_{r,u,j=1}^{m,l,n} |k'^{y_{r,u,j}}| + \inf\{\rho_2^{\frac{p_{r,u,j}}{H}} : Sup_{r,u,j}F_2\left(\frac{q|\Delta_n^{\nu} k'^{y_{r,u,j}}|}{\rho_1}\right) \right\} \le 1$$

$$= |k'| \sum_{r,u,j=1}^{m,l,n} \left| x_{r,u,j} \right| + \inf \{ (T|k'|)^{\frac{p_{r,u,j}}{H}} : Sup_{r,u,j} F_1 \left(\frac{q |\Delta_n^v x_{r,u,j}|}{\rho_1} \right) + |k'| \sum_{r,u,j=1}^{m,l,n} \left| y_{r,u,j} \right| + \inf \{ (T|k'|)^{\frac{p_{r,u,j}}{H}} : Sup_{r,u,j} F_2 \left(\frac{q |\Delta_n^v y_{r,u,j}|}{\rho_1} \right) \right\} \leq 1.$$

Hence the spaces $\Omega^3(\Delta_n^v, F, p, q, \varphi)$ for $\Omega^3 = 3l_{\infty}, 3c_0$ and 3c are paranormed spaces.

Theorem.2.4. Suppose a semi-normed space (X^2,q) which is complete, where $\Omega^3=3l_\infty$, 3c, $3c_0$ are complete semi-normed spaces semi-normed by

$$\begin{split} \varphi(x,y) &= \inf\left\{\rho > 0: \sup_{r,u,j} \left[\ F_1\left(\frac{q|\Delta^v \ x_{r,u,j}|}{\rho_1}\right) \ \mathbb{Z} \ F_2\left(\frac{q|\Delta^v \ y_{r,u,j}|}{\rho_1}\right) \ \right] \leq 1 \ \right\}, \text{ where} \\ F_1\left(\frac{q|\Delta^v \ x_{r,u,j}|}{\rho_1}\right) &\leq 1 \ , \text{ and } F_2\left(\frac{q|\Delta^v \ y_{r,u,j}|}{\rho_1}\right) \leq 1. \end{split}$$

Proof.

Let $(x_{r,u,j}^i,y_{r,u,j}^i)$ be any triple Cauchy sequence in $3\mathbb{Z}_{\infty}(\Delta_n^v,F,q)$ where x^i , y^i is a Cauchy sequence, such that $(x_{r,u,j}^i)$ and $(y_{r,u,j}^i)$ be a triple Cauchy sequence in $3\mathbb{Z}_{\infty}(\Delta_n^v,F_1,q)$, $3\mathbb{Z}_{\infty}(\Delta_n^v,F_2,q)$ respectively.

Let fixed numbers $m_1, m_2 > 0$, then for all $\frac{\epsilon}{m_1 m_2} > 0$, \exists a positive integers N such that $(\|x^i - x^t\|_{\Delta_n^\nu}, \|y^i - y^t\|_{\Delta_n^\nu}) < \frac{\epsilon}{m_1 m_2}$, for all i, $t \ge N$, also for $m_2 > 0$, choose $F(\frac{m_1 m_2}{2}) \ge 1$

Using the definition of seminorm, we have,

$$\left[\sup_{r,u,j}\left[\left(F_1\left(\frac{q|\Delta_n^v x^i_{r,u}\mathbb{Z}-\Delta_n^v x^t_{r,u}\mathbb{Z}|}{\varphi_{(x,y)}(x^i-x^t)}\right)\right)\mathbb{Z}\left(F_2\left(\frac{q|\Delta_n^v y^i_{r,u}\mathbb{Z}-\Delta_n^v y^t_{r,u}\mathbb{Z}|}{\varphi_{(x,y)}(y^i-y^t)}\right)\right)\right]\right] \leq F\left(\frac{m_1m_2}{2}\right),$$

for all $i, t \geq N$, where

$$\left[sup_{r,u,j} \left[q \left(F_1 \left(\frac{|\Delta_n^v x^i_{r,u,\mathbb{Z}} - \Delta_n^v x^t_{r,u,\mathbb{Z}}|}{\varphi_{(x,v)}(x^i - x^t)} \right) \right) \right] \leq F\left(\frac{m_1 m_2}{2} \right),$$

$$\left[q\left(F_2\left(\frac{\left| \Delta_n^{\nu} y^{i_{r,m,}} \right| - \Delta_n^{\nu} y^{t_{r,m,}}}{\varphi_{(x,y)}(y^{i} - y^t)} \right) \right] \right] \leq F\left(\frac{m_1 m_2}{2} \right) \left[sup_{r,u,j} \right]$$

So,

$$q\left[\left(F_1\left(\frac{\left|\Delta_n^{\nu} x^i_{r_{nl_{\nu}}}\right| - \Delta_n^{\nu} x^t_{r_{nl_{\nu}}}\right|}{\varphi_{(x,y)}(x^i - x^t)}\right)\right] \left[\left(F_2\left(\frac{\left|\Delta_n^{\nu} y^i_{r_{nl_{\nu}}}\right| - \Delta_n^{\nu} y^t_{r_{nl_{\nu}}}\right|}{\varphi_{(x,y)}(y^i - y^t)}\right)\right] \leq 1, \text{ such that }$$

$$q\left[\left.\left(F_1\left(\frac{\left|\left.\Delta_n^{\nu} x^{t}\right|_{r_{nu}}\mathbb{Z}-\Delta_n^{\nu} x^{t}_{r_{nu}}\mathbb{Z}\right|}{\varphi_{(x,y)}(x^{i}-x^t)}\right)\right)\mathbb{Z}\left(F_2\left(\frac{\left|\left.\Delta_n^{\nu} y^{i}\right|_{r_{nu}}\mathbb{Z}-\Delta_n^{\nu} y^{t}_{r_{nu}}\mathbb{Z}\right|}{\varphi_{(x,y)}(y^{i}-y^t)}\right)\right)\right]\leq$$

$$q\left[(F_1(\frac{m_1m_2}{2})) \mathbb{Z}(F_2(\frac{m_1m_2}{2})) \right] \ge 1.$$

The implies that

$$\left| \left(\Delta_{u}^{v} x_{r,u}^{i}, \mathbb{Z} - \Delta_{u}^{v} x_{r,u}^{t}, \mathbb{Z}, \Delta_{u}^{v} y_{r,u}^{i}, \mathbb{Z} - \Delta_{u}^{v} y_{r,u}^{t}, \mathbb{Z} \right) \right| \leq$$

$$rac{1}{2}m_1m_2 imesrac{1}{m_1m_2}\epsilon=rac{1}{2}\epsilon$$
 , for all r,u and j we get

$$\left| \Delta_n^v x_{r,u,j}^i - \Delta_n^v x_{r,u,j}^t, \Delta_n^v y_{r,u,j}^i - \Delta_n^v y_{r,u,j}^t \right| \le \frac{\epsilon}{2}$$
, for all $i, t \ge N$.

Hence $(\Delta^v x^i_{r,u,j})$, $(\Delta^v y^i_{r,u,j})$ are triple Cauchy sequence in \mathbb{R} such that $(\Delta^v_n x^i_{r,u,j}, \Delta^v_n y^i_{r,u,j})$ atriple Cauchy sequence in $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$, such that

$$(\Delta^v x^i_{r,u,j})$$
, $(\Delta^v y^i_{r,u,j})$ are triple Cauchy sequence in $3\mathbb{Z}_{\infty}$ (Δ^v_u, F_1, q) and

 $3\mathbb{Z}_{\infty}(\Delta_u^v, F_1, q)$. Therefore each $0 < \epsilon < 1$), there exist a positive integer N such that

$$\left| (\Delta^v x_{r,u,j}^i - \Delta^v x_{r,u,j}^t, \Delta^v y_{r,u,j}^i - \Delta^v y_{r,u,j}^t) \right| < \in for \ all \ i, t \ge N$$

Now ,using the continuity of F_1 , F_2 for each r, u we get:

$$sup_{r,u,j\geq N}\left[q\left[\left(F_{1}\left(\frac{\Delta_{n}^{\nu}x^{i_{r,u,}\mathbb{Z}}-\lim_{t\to\infty}\Delta_{n}^{\nu}x^{i_{r,u,}\mathbb{Z}}}{\rho}\right)\right)\mathbb{Z}\left(F_{2}\left(\frac{\Delta_{n}^{\nu}y^{i_{r,u,}\mathbb{Z}}-\lim_{t\to\infty}\Delta_{n}^{\nu}y^{i_{r,u,}\mathbb{Z}}}{\rho}\right)\right)\right]\leq 1.$$

Thus

$$sup_{r,u,j\geq N}\left[q\left[\left(F_{1}\left(\frac{\left|\Delta_{n}^{\nu} \mathbf{x}^{i}_{r,u,}\mathbb{Z}-\Delta_{n}^{\nu} \mathbf{x}_{r,u,}\mathbb{Z}\right|}{\rho}\right)\right)\mathbb{Z}\left(F_{2}\left(\frac{\left|\Delta_{n}^{\nu} \mathbf{y}^{i}_{r,u,}\mathbb{Z}-\Delta_{n}^{\nu} \mathbf{y}_{r,u,}\mathbb{Z}\right|}{\rho}\right)\right)\right]\right]\leq 1$$

Taking infimum of ρ^{s} we have

$$\inf \left\{ \rho > 0 : \left[\sup_{r,u,j \geq N} q \left[(F_1 \left(\frac{\left| \Delta_n^v x^i_{r,u,\mathbb{Z}} - \Delta_n^v x_{r,u,\mathbb{Z}} \right|}{\rho} \right) \right) \right] \left(F_2 \left(\frac{\left| \Delta_n^v y^i_{r,u,\mathbb{Z}} - \Delta_n^v y_{r,u,\mathbb{Z}} \right|}{\rho} \right) \right) \right]$$

$$\left[\left[\int \left[\int \left(\frac{\left| \Delta_n^v y^i_{r,u,\mathbb{Z}} - \Delta_n^v y_{r,u,\mathbb{Z}} \right|}{\rho} \right) \right] \right]$$

Since $(x^i,y^i)\in 3\mathbb{Z}_\infty(\Delta_n^v,F,\mathbf{q})$ and F_1 , F_2 be an a double Orlicz functions, then

 $F_{=}(F_1,F_2)$ is an a double Orlicz functions for each r,u and by continuous, we get that $(x,y) \in 3\mathbb{Z}_{\infty}$ (Δ_n^v,F,q) is linear. Then $3\mathbb{Z}_{\infty}$ (Δ_n^v,F,q) is seminorm.

The rest of proof 3c, $3c_0$ is like the previous case $3l_{\infty}$.

Conflict of Interests. There are non-conflicts of interest

Reference.

- 1. C. Asma, On some difference sequence space defined by Orlicz functions, Southeast Asian Bulletin of Mathematics, 28(2004),195-202.
- 2. A.J.Datta, A. Esi, B.C. Tripathy, "Statistically convergent triple sequence spaces defined by Orlicz function". J. Math. Anal.,4(2) (2013) 16-22.
- 3. Z. H. Hasan," Statistical Convergent of Generalized Difference Double Sequence Spaces which Defined by Orlicz Function". M.Sc. Thesis, University of Kufa, (2017).
- 4. E. Sava's and A. Esi, Statistical convergence of triple sequences on probabilistic normed space, Annals of the University of Craiova Mathematics and Computer and Science Series, 39(2) (2012), 226-236.
- 5. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math;101 (1971), 379-390.
- 6. Kizmaz H (1981) On certain sequence spaces. Canadian Mathematical Bulletin **24: 169-176.**
- 7. M. A. Niamah, On Statistically Convergent Double Sequence Spaces Defined by Orlicz Function, Master thesis, University of Kufe (2017).

الخلاصة

الهدف الرئيسي من هذا البحث هو انتاج فضاء شبه معياري مؤثر لاختلاف فضاءات المتتابعات الثلاثية باستخدام دالة اورليسز المضاعفة, وندرس بعض الخصائص المختلفة مثل الكمال, الصلابة, الرتابة, التناظر وغيرها.