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Abstract

In this article we focus on the behaviors of the generalised counting function of primes Il»(X)
and the counting function of integers Ny (x) as well as the link between them as x — oo . Here the
Riemann zeta function {p(s) (= X,n"°,R(s) > 1) play an important role as a link between
[Ip(x) and Np(x) . This work will go through the method ( not in details) adapted by Bal-
anzario [Balanzario, 1998] and later generalised by AL- Maamori [AL- Maamori, 2013 ] . Finally
we shall draw a diagram in order to determine the relation between « and g, (where @ and g are the
power of the error terms Hi(X) , Hx(x) of II»(x) and Ny (X) respectively) . The aim of this work is to
analysis the behaviour of TI»(x) and Np(X) as X — oo .

Note that : " It’s a beneficial to point out that our effort in this paper is not to exchange the values
of some functions of Balanzario’ s method . Since , changing any small value of one of the functions

of Balanzario’ s method may be leads to loss the aim of the work " . Therefore , in this article we
show the ability of changing the values of some functions and in which places in the proof we should
sort out .
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Introduction
Let P ={p1,p2,... } bea set of real numbers satisfying the following conditions :
1< p1, pn<pn1 and p, — o0 as n— oo . Beurling [Beurling, 1937] called
P the generalized primes ( Beurling primes ) . The generalised counting functions of
primes and of integers are defined as follows :

T[?(X) = Zpsx,pe? 1 and N?(X) = Znsx,ne]\f 1.
We note that mp(X) is defined as a discrete function .
The following definition is needed .
Definition : Let Iy , N be functions such that (I, € S§ ) and (N, € §F))
with (Np =exp * 1 ) . Then (I, N ) is called an outer g — prime system .
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The generalised prime systems have been investigated by Beurling and later by
many authors studied it such as Diamond [Diamond , 1969 ], Hilberdink [Hilberdink,

2012 ] and so on . Beurling introduced the generalised prime theorem by showing :
_ x 3 X
If Np(x) =A(X) +O(10g”)for A>0and y> 5 , then Ttp(X) ~ Togx
This is an analogue of the prime number theorem (PNT) , also Beurling showed that

.. 3 . . . .
the condition y > 5 Is necessary in the sense that there is a continuous analogue

of a g — prime system with y > % for which the PNT does not hold .

From a several papers in this field such as " Diamond [Diamond , 1970 ] , Diamond
[Diamond , 1969 ], Bateman [Bateman , 1969 ], Ellison and Mends [Ellison and
Mends , 1975 ], Hilberdink [Hilberdink , 2009 ] and so on , We see that the main
core (of the behaviors of mp(X) and Np(X)) is the size of their error terms where
Np(x) =ax + Hy (X) (will use laterin (6) ) = mp(X) = li(x) + H2(X) . Here li(x) =
x dt

2 logt
(*) Here S; = {f€S:Sisthe space of all functions f: R — C s.t. f is right-
continuous and of local bounded

variation with f(1) =0 } .
(**) Here S; ={f€S:Sisthe space of all functionsf: R — C s.t. fis right-
continuous and of local bounded
variation with f(1) =1 } .

(***) f = exp~g iff f*g_=1_ where f_ €S defined for x>1 by f (X)=
J; logt df(x) .

In this article , we study the behaviors of H; (x) and H,(x) (as x — oo) in deep
as mp and Np are counts g- prime functions . In order to see that taking the method
of Balanzario in 1998 and later generalised by AL- Maamori in 2015 . We note that

the error terms of the counting functions are mostly of the form :
X

(i) O((logx)V) (ii) O (xecUogn®) (iii) O (x%)
we deal with the form (i) inour work .

Balanzario defined Ilp(x) = flx 11;;_: y(t) dt  where k > 1,

YO =1- Do, @ 02 (1)
and Jp(s) = xS d Np(x) =[x~ €@ =exp { [“x5dMp ()} ... (2)
for more details of (2) see[ Hilberdink, 2012 ].

Balanzario proved that: TIp(x) =i (x)+O(Xe‘C@), c>0 .. (3)
implies Np(x) = px + Q7 . (xe kVI8x) p>0 k>0 e (4)
If we assume that we have :

Mp(x)= li(x) + O (x e*0oe0*y "k>0., .. (5)

Balanzario showed that for a=% implies NVp(x) = px +0O (x e~ ¢Uogx)f y
for some p,c > 0 and ﬁ:% here .

Given (5), Malliavin proved that : NVp(X) = px + O (x e~ ¢ @og)**)
for some p,c > 0 (see[ Malliavin, 1961 ]) . Diamond showed that with (5)
holds , we could get : Np(x) = px + O (x e~ €@080°***y for some p>0,¢c >0 .
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This shows that Hy(x) = (x e™*V1°8* ) k>0 has fixed power at a = % , but g var-

ies into different values . Suppose that we get (5) with a = %

The question is : " What is the best possible value could get using Balanzario’ s
method ?".

(*) For Fand G be functions defined on some interval (a, o ). We write F (x)
= Q (G (1)), tomean that there exist a constant ¢ > 0 suchthat |F(t)| > cG
(t) for some arbitrary large values of t . Further , we write F (t)= Q.+ (G (t)) and F
(t)= Q_(G (t)) if there exist a constant ¢ >0 such that F (t) > ¢ G(t) and F (t) <
- ¢ G(t) hold respectively for some arbitrarily large values of t. We write F (t) = Q
+ (G (t) if both F(t)= Q+(G(t)) and F (t)=Q.(G (t)) hold [Bateman, 1969
].

ik
Suppose that we have Tlp(x) = [ 110;
1

Mp(X) = li(x) + O (x e~c180%) for some ¢ >0 and take a=5, K=4,

no=3, x=e® . Herechanging a from % into § will leads to considerable work .
This means that :

y(t) dt , k>1 where

bo=exp{(logx)"*)} &= = —— = (logx) ",
E%n (logxn)3

X1 = exp{(logx,)® 3} = log Xns1 = (logx,)®  and

To= exp{(logx)¥ )} . an= = . a=Ynsn,

Estimation of Mp(x) :

With the above new values ( or condition ) of the method , our aim is to avoid two

important points which are :

(1) The loss of generality . (2) cut of some simple details .

For this , we keep tackling the curtail sectors of Balanzario’ s method . These cur-

tail parts improved to be :

Proposition(1):(This is the modification of proposition (2) in [ Balanzario , 1998 ])

If Tp(x) isgivenby (1) ,then Mp(x) =li (x)+0O (x e~c@ogx))

here az% ,C=4.

Proof : we have :
1-t=k

Mp(x) = J;
It's obvious that we could get T (x) = li (X) - Xpsn, @n

It remains to estimate the summation part and show that :

1
x cos( by logt) _ —4 (logx)3
Zn>no a, fe ~ton lomt Togt dt = O(X e ) .

New to estimate the integration in the summation part we get
1—-an . R
| [F D) gt < 3% | |ts remains to calculate the magnitude
1

x1-t~k by logt)
YO dt= [ (1 B, @ D

fx cos( by logt) dt
e  tan logt )

logt

tan logt bn
—an o
3% , by definitions of b, and a, above , we have :
_ 1
1
xl=an _ x x=an _x_ x (logxn)3 _ logx 1
— = T —= — = xexp{-—% - (logx,)s }

e(logxn)3 (logxp)3

= x exp{- (logx)§ - (logxn)é ¥
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1 1
=x exp{-(logx )3 (1+ (logx)3)}
1
=x e *{o8x)3  Therefore |
1
Zn>n0 anl fxw dt |§ Zn>no a, (3x g4 (logx)3 )

tan logt
1

= 3axe 4(logx)3 — O(X e—4(logx)§ )

Estimation of N (X) :
Here we calculate Ny (x) in order to see the effecting of the error term of Ilp(x) on
the behaviour of Np(x) in general . So we let Mp(X) = ff]\f(t)dt . The reason of

doing this , is because dealing with Mx»(X) is more easier than dealing with N5 (X) in

calculations . Therefore ,
1 b+ico

Mp(X) = 77 b—ico {p(S) s(s+1) ds , b>1. oo (6)
So, in order to calculate My (X) we have to calculate {p(s) . Following same argu-
ments as in [ Balanzario , 1998 ] , we see that : | {p(s) | < 45

Now , the integration in (6 ) has a singularity pointes in 0 and 1 , therefore if we
calculate the integration on [ b - ico , b + io0] , then we have to make a partition of the
path on this interval in order to avoid these pointes by restricting the domain as fol-
lows :

[';:from b-ico to b—iT,

[ :from b—iT to -%—iT,

['3: from -%—iT to -§+iT,

[y : from -§+iT to b+iT,

['s:from b+IiT to b+ioco .

Thus , we can write (6) as follows :

Mp(X) = I1+ s +Jat. +Jn+residues{0,1},

where Iy, = f {p(s) , m=1,...,5,
z—mf {p(s) ——= (+1)

Here Fm is the path of integration in (6) and Cy isthe m th horizontal loop

with J(s) =bn, .

Now , we note that the estimation of 1, is similar to Is and the estimation of I, is

similarto 15 .

s( s+1)

, no<|m|§n.

Hence the estimation of I, and Is by [Balanzario, 1998 J are : O (%) :

the estimation of I, and I, are: O(;f—n)2 and

the estimation of I3 is : O (\/i;) . Therefore , from above we get :

| Inm | < O(g) , m=1,...,5 andhence (6) can be written as follows :
Mp(x) = 0(§)+zn=_n Jo + residue {0,1} ... (7)

Now , if we calculate the residue { 0,1 } in (7 ) by [ Balanzario, 1998 ], then we
get:

Residue { 0,1} =k@(1) xZ—Z +(1-k)@(0)x ,and hence (7 ) can be written as fol-
lows :
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Mp() =KW T+ (LK OO X + Be o + O () oo (8)

Now , if we calculate the expression ’TC— appearing in ( 8) , then we get by [ Bal-
anzario, 1998 ]:

2
;_ = x® exp{-(logx,)*3} , and hence the equation ( 8 ) become as follows :

3
Mp0)= KO+ Shoy J +O (¢ e7lo80) (9)
Its remains to estimate the magnitude > __, J,, appearingin (9) as follows :
Proposition( 2 ):(This is the modification of proposition (8) in [Balanzario,1998 ] )
8
| Zno<imisn-1/m | < 60 x* e(ogx) .

Proof : firstly, we estimate Jn as follows: |Jp | —| 2—m fe, ) 75 s(s+1) |

and we see that by [Balanzario , 1998 Jwe get: |Jn | < —2 X e‘“mlogx

Secondly , we estimate Y, <|m <n-1 Jm as follows:
If [m|<n-1,then e 9mlogx < eg-an-1logx

_ logx logx _ logx
= ep (g = ep{rt) =ep (-
(log xn)3 ?

(logxn)
-1 n+in 8 8

S eXp {Lio S EXp{ '(logxn)9 + i‘n} S exp { -(logxn)9+in } S

(logx5)° 10 10

8
2 e~ (08xn)%  \yhere |10gX - log Xy | < 1§—n , and hence

8
_ 3 1

|Zno<lmlsn—1]m | < 30 X2€ (logx)® Zlml >ng bm_2 .
Now we finish the proof by noting that the last sum is finite :

: <2 Yo, e 20o8xm)
ez(logxmﬁ 0

1
1 1 3
Z|m|>no bmz S Zlml>n0

m
3

<2 Zm>noe_2(10) < 2

8
Therefore , |Zn0<|m|5n—1]m | < 60 x? e~(ogx)?
8

Since e~(108x)° < e‘(l"g")4 then the equation (9) become as follows :

Mp(x) = k®(1)—+ (Jn+dn) +O(X° e-ﬂogx)‘*) ... (10)
It remains to study the expression : J., +Jy .

Here J,=J2 +J2 where JZ, J2 refers to the integrals along the line segment CZ and
C?2 lying respectively above and below the branch cut C, and suppose that C2 with

0= —m
s=1-—a,+ib,—t
ds = —dt
l0<t<1-q,+2

Since ¢ = -1 fl—an+; {p(1— ap+iby—t) x?~ antibn—t
nooomi 0 (1— ap+iby—t) (2— ap+ibp—t)

its direction reversed [ Balanzario , 1998] : - C?

(-dt),then

_ (logx )™ 3 {p(1— ap+iby—t) x2~ antibn-t 9 —(logx)%
In= gt f (1= ap+ibp—t) (2— an+iby—t) dt+0 (X" e ) (11)

Now , if we rewrite the integrand in (11) as follows :

p(s) _ . n
S(:];-il) =(s—1- a,+ib,)2 f,(s)
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(s+k=1) [jmi>ng (1— m)_m
where f,(s) = men T , and we deduce that by [Bal-
s(s—=1)(s+1) (s—1+an—ibp+k) 2

anzario, 19981] :

3
i .an an Ed
- 1 2— ap+ib —Ti—- 1 S+l 2 ,—(logx)s
= — xTWTn oT (—)2 7" 5, + O( X" e”U08
]n 27l (logx) n ( ) 1

3 an
with Sp= [1°8* " et £2° f,(1— ay +iby — o) dt

Similarly , we calculate J2 in a similar way we obtain
3

= T1 L 2—aptiby GmRE 1 41 o 2 ,—(logx)#
5 — X e 2 (logx) 2 S, +tO0(x" e ) and from
Jo =Jn +Jn  weget =
Cm 3
sin-a _ ; 1 Sn _ Y
Jn = —E= xFT At ()2 S 40 (X7 emlornt) e (12)

Now , if we calculate J., we obtain the complex conjugate of J,

because b, =-b, ,therefore J, +J, =2 R(J).

Now , in order to estimate the integral S, appearing in ( 12 ) , we first obtain the
lower and upper bound for f, (s) which is appearing in S, , we see that by [ Bal-
anzario, 1998 Jweget: |f, (s)| < % be the upper bound of f,(s) and

lfn (8)]| = 80(1) o be the lower bound of f,(s) .

Now , we can estimate the integral S, appearing in (12 ) as follows :
1

-2 (logxn)3
We get by [Balanzario, 1998 ] that : 1S, > 6216—;0 .. (13)

We shall use this lower bound for S, appearing in (12 ) . Now consider the other
factorin (12 ), we get by [ Balanzario, 19981 :

Singdn 2o a, (7t > 2 o~ (logx,)3

1
T logx s 2 (logx)? (loglogxy)?
Now , we can estimate the equation (12 ) as follows :
1

x2 e—3(logxn)§ 10~5
Unl = m1600 = 4(logx)* — (logx)*
We already know that |J,,| is large, but still it can be that R (/, ) =0.

Now , let us recall here equation (12), where x=x,(1+ o1 ), 16:1 <1.Then,

logxp

1
—3(logx)3

we get by [ Balanzario, 1998 ] :
1

-5 =
RUn) 2 z(llfgx)4 e=c8)3 ¢>0 if x >X; and 6;=6 (+) and
-5 1
R(n) < - gooeor e <0807 >0 if x =Xy and 6126 (-) .

These inequalities and the equation :
3
Mp(x)= 20(1) X* + 2R (J,)+ O ( x* e (ogx)®) |
imply relation : Mp(X) =2 @(1) x>+ Q4 (x? e~ (08X)3) ¢) > 0
Now , we need the following trick to move from M(X) into Np(x) .

Lemma (5) : Suppose that Ny (x) € S; . Let Mp(X) = flxN(t)dt , then for every
0<y<x , wehave :
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Mp(X)— Mp(X—y) Nop (%) < Mp (x+y)— Mp(x)
y » - y
Proof :

Let M(x)=cx* +0 ( x* e*0°8X)%) forsome 1>0 , then
lV'(X)-EX2 =0 (g(x)) suchthat g(x)= x> e-Adogx)®

AN

Therefore|M(x)—§x2| =0(g(x)). ... (14)

Since the function Ny (x) is increasing function , so for every 0 < y < x, we have :
fo Np®dt - [T Np(®)dt = [ Np(O)de <y Np(x) ... (15)

On the other hand ,

7 Np@de - [T Np@dt = [ Np()dt >y Np(x) ... (16)
Therefore from (15)and (16) , we get :

Mp(x)— Mp(x—y) < N < Mp(x+y)— Mp(x) e (17)

y
This is sufficient to show that : if Mp(x) = p x>+ E (x*) for some p >0 ,
then Mp(X)=p1X +E(X) , p1>0.

Appendix :

Moreover , if we have « :g , then we could get with the following setting :

K=4 , no=3 , x = el0 ,
n=exp{(logxn)® )}, an= o= —— =(logx:) >,

(logxp)3
X1 = exp{(l0gx,)2 } = logxn: = (logx,)® and

To= exp{(logx)* )} . an= = . a=Zusn, tn -
We see that by a previous steps that :

2
Mp(x) = li(x) + O(x e 2U08x)3) |

M(x)=20(1) x>+ Q. (x* e c00g8X)3Yy c0 >
and hence Np(X)=px+EX) , p>0.
Apart from that if we draw a diagram of a — 8 space we would get :

74



Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(26): 2018

'B N
1
2/3 2
1/2 dp
1/3 b,
a
0 /13 1f2 |2/3 1

Figure (1)
Show the relation between a and g

a; related to Balanzario a=pf :% , b1 :é and b, :g , thismeans a = 8 :g
2 .
and a=p = 3 respectively .

As a result we have seen the error term of IIp(x) linked with the error term of
Np (x) by zeta function {p(S)

Future work
Assume that (5) holds with % <a<1 (*)

Question (**) : given (*) could we get Np(x) = px + O (x e~ cUogx)f y
B < % forany a ?
Note that if Question ( ** ) holds this means that it is possible to get :

1

Mp(X) = li(x)+0O (xe c@802) ¢ >0
and Np(X) =px+o0o( x), p >0 .This will show that Riemann Hypothesis is
closed to be true .
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