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Abstract

This paper is concerning with essential degree of approximation using regular neural networks
and how a multivariate function in L, (K) spaces for p <1 can be approximated using a forward
regular neural network. So, we can have the essential approximation ability of a multivariate function
in L,,(K) spaces for p < 1 using regular FFN.
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1. Introduction
Various papers on feasibility of approximation by forward neural networks

have been made in past years (see [Cardaliaguet & Euvrard,1992; Chen, 1995; Chen,
1994; Chui, 1992; Cybenko, 1989; Gallant, ,1992; Hornik, 1989; Hornik, &
Stinchombe, 1990; Leshno et al., 1993; Mhaskr & Michelli,1992].

The most important result among these papers is that :

If we have a continuous function with multivariable and compact domain subset
of RY there exist a feed forward neural networks (FNNs) as an approximation for it .
By a sigmoidal we can be approximated arbitrarily well .
A three-layer of the FNNs with d input units and one hidden and one output units can
be mathematically expressed as

Nn(®) = X%, Cic(((l)ijxj )+ 91). xeRY,d > 1, (1.1

where 1<i<m, 6;€R is the threshold, w; = (wi;, Wiz, ..., w;q)"T € RY are
connection weights of neuron i in the hidden layer with input neurons, c; € R are the
connection strength of neuron i with the output neuron, and o is the sigmoidal
activation function used in the network.

In this paper we prove direct and inverse estimation and saturation problem for
the approximation of multivariate function in L, (K) spaces for p < 1 using a forward
regular neural network .
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2. Notations and Definitions
Let R be the set of reals , RY be the d-dimensional Euclidean space (d > 1) ,

and let K be any subset of RY
Definition 2.1

Let K be a multiple cell in d-dimension Euclidean space RY (d > 1), the L,
space for p < 1 defined by :

1
Ly(K) = { K-> R; |Ifll, = (J, [fIP)> < o0}

Forany x = (x4,X5, ...,Xq) and y = (y1,¥2, ---,Vq)
Let d(x,y) be the Euclidean distance of x and y, that is,
d(x,y) = V(x1 —y1)? + (X2 —y2)2 + - + (Xa — Ya)?
Definition 2.2

the r — th order difference of function f € L, (K)

ALf(x) = (I— THTf(x) ,x=1%;,X3,..,Xq €K ,r€Nand h >0

we use I for the unit operator.

For any positive integer r we define the generalized module of smoothness af the
rth order by the formula

wr(f,8)p = supp<n<sllApflly,, 6> 0,f € Ly(K).
Definition 2.3
we denoted by the Lipschitzian class Lip(a), defined by the space of all

functions f in L, (K) spaces satisfies w(f,t), = O(t%) , where 0 < a <r.

Remarks 2.4
1) In this paper we deal with the approximation by neural network with special
type of neural activation functions J, of which each function o:R — [0,1] has up to
K + 1 order continuous derivatives 6,k = 1,2, ...,K+ 1.
2) The regular neural activation functions are the normal sigmoidal activation

functions o(x) = 1+e1_ax for positive .

3) Any neural network whose neural activation functions are regular (satisfies the
conditions of part 1 of this remark) will be called a regular neural network.
Definition 2.5
Letr be an integer number and
P.(x) =a,x",x € [a,b] € (—o0,0) (2.6)
be a homogeneous univariate polynomial of degree r.

XU Zongben & CAO Feilong (2004) prove the lemma “Let [a, b] be a
compact interval, c €], be a regular neural activation function and P.(x) a
homogeneous univariate polynomial of the form (2.6). Then for any € > 0, there is a
neural network of the form (1.1) the number of whose hidden units is not less than (r
+ 1) such that [IN,(x) — P.(x)| < €e"

As a direct consequence of above lemma we introduce the following
theorem .

Theorem 2.7

For any regular neural activation function o € J. and a homogeneous univariate
polynomial P.(x) and a given € > 0 there is a neural network of the form (1.1)
with not less thanr + 1 hidden layers such that [N, (x) — P.(x)||, < €

Proof:
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Since o € ], be a regular neural activation function and P.(x) a homogeneous
univariate polynomial then by above lemma we have for any € > 0 there is a
neural network of the from (1.1) the number of whose hidden units is not less
than (r+ 1) such that:

INn(x) — (x| <

( (k ))1/P
_ P
= |Nn(X) Pr(X)l (( (k))l/p)p
_ P
= 0 =R < (o5

= (g N0 =R < (S

/p
= |[IN,(x) — P.(x <M
Ny = ROl < <25

= ”Nn(x) - Pr(X)”p <e
In this section we construct an FNN to realize universal approximation to any
integral multivariate functions in Lp(K) ,P <1 we will use the Bernstein _
Durrmeger operation as base tools. m
Definition 2.8 [X. Zongben and C. Feilong , (2004) ]

Let K be any subset of RY the Bernstein _Durremger operater B, in L, (T)
defined by :

(an)(a) = ZlKlsn l:)n,k (x) d)n,k(f) (2.9)

Wherex € K, f€ L;(K)and”

dn(D = (m+ d)!/n! [ Pyi(w) flw)du
Lemma 2.10

If f€ Lp (k) for p < 1 then

[1Buf = fllp < c(p) w (f, 1/n),
Proof: |[Buf—fllp < C(pl) K. (£, (1/n)")p

< c(p) w.(f, H)p [E.S.Belkina and S. S. Plato)ov (2008)]
Lemma 2.11
If f € Lp (k)forp < 1then
w(f;1/n) < c(p) Xt 11Bif — 1]l
Proof// w.(f,6)p = w.(f— Byf+ Byf,8), < c(p) o (f—Byf,8) + w:(B,f,6) <
c(p) [If = Bufl| +]
Ba(f) = Bo(H) = Ba(£) = Ba(D + (Bu(6) = By, (6) + -+ (By(H) — Bo(D)

2l =n,1=maxi,2' <n
J = wp(Byuf,8) = wp(Xlo1 Byi — Byi-1,271),
= (Xl Byi — f+f—B,i-1,27h),
< c(p) Xizq lIf = Byif ]
< c(p) Xz [If = Bif [[

= o (f,6) < c(p) ity |IBif — 1], . m

To explain Lemma 2.13 we need the flowing notations: [X. Zongben and C.

Feilong , (2004)]
1. Let z¢ be the set of all non-negative multi-integers in R¢
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2. For any x = (xq,%,..,Xg) €ER* and k = (ky,ky, ..., k) € Z%, Let |x|=
x|kl =% ki x® =xk . xkand k! = k! ky! .. ky!

3. Wesaythatx <y, forany,y € R®,iffx; < y;forany1 <i <s.

4. For any fixed point p Let N, = (p+d 1)

Be the number of multi-integers i = (iy, iy, ...,iq)in Z¢ that satisfy i; +i, + - +

lg=p

5. Letl, = (p+d %) be the number of multi-integers j = (jy, o, ..., jgq) in Z%~1 that

satisfy j; +j, + -+ jz-1 =D

6. Denote by jyp-1+ 1,1 <1 <1, a generic multi-integers j in 791 satisfing

Jitjz+ - tja-1=Dp

7. i, 1 <1 < N, a generic multi-integers j in Z{™* satisfing j; + j, + -+ jg—1 =

p

8. Forany 1< I < N, Let l(p) = (p — |j;l,j;) then each l(p) = p is multi-integer

in Z¢ that satisfies | (p)| =

9. Definep, = (1,j;),1 < land p(p) 1<I<N,

2(1—+p) P1,
we then have |p1p)| < Efor any1 <1< N~

The flowing lemma provides an equivalent expression of Bernstein-durrmeyer
operator B, . m
Lemma 2.12 [X. Zongben and C. Feilong , (2004) ]

For any € L,(T), the Berustin -Durrmeyer operator B,f in (2.9) can be

expressed as :

B, f(x) = Z OZ 4P (x, p™)p (2.13)
p=

) 4(P)

where (xp )) is inner product x and p, are uniquely determined

(p) (), .
G G (ij)uw d(Z)\ . C{fﬂ\
by| G2 G2 .. (JNp)” G (2t iy @ O
(jp)ne (jz)ij v ) d(p) / i) (p)(f) /
With cl(p)(f) = )| (p) d)nq(f) ((p) q) (- 1)‘11 —Q‘

1<I<N,;.
Remark 2.14
We observe that in expression (2. 14) each term (x, pln)) can be viewed as

homogeneous uniriate polynomial of (x, p; )) with order p , and so by Theorem
2.8, it can be approximated arbitrarily well by a network of the form

Np+1(X) = Zi\lp1 Cip 0'((1)1p<X p(n)) + 9) ,Kp >p+1

Remark 2.15
1) As B,f(x) can be approximate f, the following neural networks

N,(x) = Z Z d(p) Z CipO u)i,p(x, pl(n)) + 6) (2.16)

p=01=1
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Then can approximate f to any accuracy .
2) the network (2.17) will be the FNN models we propose use in this paper.
3) the network (2.17) are clearly of from (1.1) and contain hidden units where
m = Ny + k;N; + -+ kN,
> Ny + 2N; + -+ (n+ DN,

= Shotke+ D (F T = mo(m).

Theorem 2.17

Forany f € Ly(K), p <1 there is aregular, one
hidden layer FNN, N, (x), of the form (1.1) with o €], and the hidden unit
number m > Yp_o(k+ 1) (k+d ) = my(n) such that

IN, = fllp < c(p) w0, (62,
Proof: we assume f € L, (K)

Then, by Lemma 2.12, the Bernstein —durrmeyer operator B,f can be defined
and expressed as B,f(x) = 021 d(p)(x o) n))p
and, furthermore, it approx1mates f1n the following sense

|1Baf = fll, < c(p) w(f)p  [lemma 2.10]
And by remark (2.15) part 1, we have

INn = fll, < c(P)I[Baf = fll, < c(p) we(£,2)p -

Theorem 2.18

Forany f € L,(K), p < 1 there is a regular, one

hidden layer FNN, N, (x), of the form (1.1) with ¢ € ],, and the hidden unit
number m > ¥_o(k + 1D(*}]") = m,(n) such that

c(p)w(f, n)p < it lINy — Al

Proof: we assume f € L,(K)

Then, by Lemma 2.12, the Bernstein -durrmeyer operator B, f can be defined and
expressed as Bpf(x) = Xp- OZTIP d(p)(x, pl(n))p (2.13)

() ) we have (x, pl(n)) <1

and since |p
1e(1<@p®><n

Each term (x, p, Myp in (2.13) is univariate homogeneous polynomial of (x, pln))
with order p define on [—1,1]

2

Now by Theorem 2.7 we have (x, p; )>p can be approximated by neural network
Np
Nigp = Z “pi @ (“’DI“‘ Pi™)+8) i wp; € R, Ky = p+1(219)
i=1
With accuracy

”NKp (x, pln))p” <e€ (2.20)
Then for constructed FNN
Nn(X) = 02 d(p) 21 1 Clp (wi,p<X’ pl(n)) + 9) ’ Cp,i’ (*)p,i ER ’ Kp = p +1

and we have
IN, — fll, = [IN,f = Bof + Bof — 1l
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= ”an_ an”p + ”an_ f”p
1
< c(p) w.(f, H)p + [INof — Bufllp (2.21)

The term |[N,f— Byf]|, in above can be arbitrarily small, because (2.19) and
(2.20) imply

N
INof = Bufll, = [| 3o 217, 4P (66 p{™)P = B, (150" + O]

N N

= Zheo Ty a4 max | (x, ™) = N, | < €Zpoo 237, [ |
Then inequality (2.21) imply ||B,f — fl|, < c(p) w.(f, %)p
and by (Lemma 2.11) c(p) w.(f, %)p < c(p) XL, IIBif — fllp
Then c(p) w(f,2)p < ZiLy [[Nof — f][,. m

Theorem 2.23
For any f € L,(K), p <1 there is a regular, one hidden layer FNN, N, (x),

of the form (1.1) with o €], and the hidden unit number m > Y}_,(k +

1)(k5f11) = my(n) such that

INof — Bufll, = O(n"2) if and only if f € Lip(a),

Proof: let f € Lip(a),

From [N, — fll, < c(p) w.(f, %)p = |IN, —fll, = 0(%)“
1

And by c(p) ;(£,3), < Ty |INf — i1,

. 1 1
We obtain w,(f, ;)p =0 (E) N
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