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Abstract 
This paper is concerning with essential degree of approximation using regular neural networks 

and how a multivariate function in       spaces for     can be approximated using a forward 

regular neural network. So, we can have the essential approximation ability of a multivariate function 

in       spaces for     using regular FFN.  
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 الخلاصة
درسنا في هذا البحث درجة التقريب الاساسي بأستخدام الشبكة العصبية المنتظمة ، وكيف يمكن تقريب الدوال  المتعددة 

بأستخدام الشبكة العصبية الامامية المنتظمة ، وكذلك بامكاننا الحصول عمى مبرهنات     عندما       المتغيرات في فضاء 
بأستخدام الشبكة العصبية الامامية     عندما       مباشرة وعكسية ونظرية تكافؤ لمتقريب المتعددة المتغيرات في فضاء 

 المنتظمة .
 

 ، التقريب الافضل .       لنعومة ، فضاءات تقريب الشبكة العصبية ،مقياس ا  الكممات المفتاحية :

 

1. Introduction 
  "Various papers on feasibility of approximation by forward neural networks 

have been made in past years (see [Cardaliaguet & Euvrard,1992; Chen, 1995;  Chen,  

1994;  Chui, 1992; Cybenko, 1989; Gallant, ,1992;  Hornik, 1989; Hornik, & 

Stinchombe, 1990;  Leshno et al., 1993; Mhaskr & Michelli,1992]. 

The most important result among these papers is that : 

If we have a continuous function with multivariable and compact domain subset 

of    there exist a feed forward neural networks (FNNs) as an approximation for it .  

By a sigmoidal we can be approximated arbitrarily well . 

A three-layer of the FNNs with   input units and one hidden and one output units can 

be mathematically expressed as  

      ∑    (〈      〉    )                           
          

 

where               is the threshold,                   
     are 

connection weights of neuron   in the hidden layer with input neurons,      are the 

connection strength of neuron    with the output neuron, and   is the sigmoidal 

activation function used in the network.  

         In this paper we prove direct and inverse estimation and saturation problem for 

the approximation of multivariate function in       spaces for     using a forward 

regular neural network . 
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2. Notations and Definitions 
          "Let    be the set of reals ,    be the d-dimensional Euclidean space (     ," 

and let   be any subset of    

Definition 2.1  

             " Let K be a multiple cell in d-dimension Euclidean space         , the    

space for     defined by : 

               ‖ ‖   ∫ | | 
 

 
 

     . 

For any                                     
Let        be the Euclidean distance of   and   , that is , 

       √                            " 
Definition 2.2  
                  the      order difference of function                                      

                          
                                             and      

we use    for the unit operator.   

                 ‖  
  ‖                     ." 

  Definition 2.3 

            "we denoted by the Lipschitzian class         defined by the space of all 
functions   in       spaces satisfies                , where       ."                

"Remarks 2.4  

1) In this paper we deal with the approximation by neural network  with       special 

type of neural activation functions    of which each function            has up to 

    order continuous derivatives                . 

2) The regular neural activation functions are the normal sigmoidal activation 

functions      
 

        for positive  . 

3) Any neural network whose neural activation functions are regular (satisfies the 

conditions of part 1 of this remark) will be called a regular neural network." 

Definition 2.5  

       "Let r be an integer number and  
                                     

                                                                       " 
be a homogeneous univariate polynomial of degree r. 

            XU Zongben & CAO Feilong (2004) prove the lemma "Let [a, b] be a 

compact interval,       be a regular neural activation function and       a 

homogeneous univariate polynomial of the form      . Then for any     , there is a 

neural network of the form (1.1) the number of whose hidden units is not less than (r 

+ 1) such that |           |    "               

 
             As a direct consequence of above lemma we introduce the following 
theorem .” 
   
Theorem 2.7  

"For any regular neural activation function      and a homogeneous univariate 
polynomial        and a given      there is a neural network of the form (1.1) 
with not less than     hidden layers such that ‖           ‖    " " 

Proof: 
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Since      be a regular neural activation function and       a homogeneous 
univariate polynomial then by above lemma we  have for any     there is a 
neural network of the from (   ) the number of whose hidden units is not less  
than  (    ) such that : 

    "  |           |  
 

(    )
  ⁄  

   |           |
   

 

      
 

 ⁄
   

  ∫ |           |
 

 
 ∫  

 

      
 

 ⁄
  

 
 

   ∫ |           |
  

 

   

  ∫  
 

      
 

 ⁄
   

 
 ⁄

 
 

  ‖           ‖  
         

 
 ⁄

      
 

 ⁄
 

   ‖           ‖   " 

In this section we construct an      to realize universal approximation to any 
integral multivariate functions in            we  will use the Bernstein _ 

Durrmeger  operation as base tools .   
Definition 2.8 [X. Zongben and C. Feilong , (2004)  ]  

              Let   be any subset of    the Bernstein _Durremger operater     in       
defined by : 
                      (        = ∑     | |                                                   

Where                  ” 

                  ⁄  ∫               
 

 

Lemma 2.10  

 If           for     then 
  ||     ||              ⁄    

Proof :    ‖     ‖                ⁄      

              
 

 
                                             

Lemma 2.11  

            "If          for     then  

                  ∑ ||     || 
 
     

Proof//                                                           

      ||     ||    

                         (               )    (           ) 

                    

                ∑          
 
            

     ∑              
 
            

     ∑ ||       || 
 
      

     ∑ ||      || 
 
     

             ∑ ||     || 
 
     .  "   

 
 “        To explain Lemma 2.13 we need the flowing notations: [X. Zongben and C. 

Feilong , (2004)] 

1. Let    
  be the set of all non-negative multi-integers in       
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2. For any                   and                  
 , Let | |  

∑   
 
    | |  ∑   

 
         

    
   and               

3. We say that      for any        , iff       for any      . 

4. For any fixed point   Let        
       

Be the number of multi-integers               in   
  that satisfy         

     

5. Let        
       be the number of multi-integers                in   

    that 

satisfy                
6. Denote by                  a generic multi-integers   in   

    satisfing 

               
7.            a generic multi-integers   in   

    satisfing              

  

8. For any 1       Let   
   

    |  |     then each   
   

   is multi-integer  

in   
  that satisfies |  

   
|     

9. Define                     
   

 
 

      
            

              we then have |  
   

|  
 

 
 for any        ” 

The flowing lemma provides an equivalent expression of Bernstein-durrmeyer 
operator    .  " 
Lemma 2.12 [X. Zongben and C. Feilong , (2004) ] 
        "For any       , the Berustin –Durrmeyer operator     in (   ) can be 

expressed as : 

                              ∑ ∑  
   〈    

   〉 

  

   

 

   
                                        

where 〈    
   〉 is inner product   and   

   
,   

   
 are uniquely determined 

by

(

 
 

    
      

   (   )
  

    
      

   (   )
  

    
       

    (   )
  

)

 
 

(

 
 

  
   

  
   

 

   
   

)

 
 

=(
       

  
)

(

 
 

  
   

   
   

   

  
   

   
   

   
 

   
   

    
   

   )

 
 

 

With   
   

    
  

      
 ∑        

 

  (  
   

  )     
       |  

   
  |   

       . 

Remark 2.14  

           "We observe that in expression (2.14) each term 〈    
   〉 can be viewed as 

homogeneous uniriate polynomial of 〈    
   〉 with order    , and so by Theorem 

2.8, it can be approximated arbitrarily well by a network of the form  

        ∑     
  
    (    〈    

   〉   )        ” 

 

Remark 2.15  

1) As        can be approximate  , the following neural networks 

      ∑ ∑  
   

∑     (    〈    
   〉   )
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Then can approximate   to any accuracy . 
2) the network (2.17) will be the     models we propose use in this paper. 
3) the network (2.17) are clearly of from (1.1) and contain hidden units where  
                   
                         

     ∑      (
     

   
)        

    . 

 

 
Theorem 2.17   

             For any          ,     there is a regular, one 

hidden layer    ,      , of the form       with       and the hidden unit 

number   ∑      (     
   

) 
          such that 

 ‖    ‖            
 

 
   

Proof : we assume          

 Then, by Lemma 2.12, the Bernstein –durrmeyer operator     can be defined 

and expressed as        ∑ ∑   
   〈    

   〉 
  

   
 
    

and, furthermore, it approximates   in the following sense 

||     ||            
 

 
       [lemma 2.10]  

And by remark (2.15) part 1 , we have  

‖    ‖      ||     ||            
 

 
   .   

―Theorem 2.18   

          "For any         ,     there is a regular, one 

hidden layer    ,      , of the form       with       and the hidden unit 

number   ∑      (     
   

) 
          such that 

         
 

 
   ∑ ‖    ‖ 

 
    " 

Proof : "we assume          

Then, by Lemma 2.12, the Bernstein –durrmeyer operator     can be defined and 

expressed as        ∑ ∑   
   〈    

   〉 
  

   
 
             

and since  |  
   

|  
 

 
 , we have 〈    

   〉     

        〈    
   〉     

Each term 〈    
   〉  in (2.13) is univariate homogeneous polynomial of 〈    

   〉 

with order   define on        

Now by Theorem 2.7 we have 〈    
   〉  can be approximated by neural network  

   
 ∑    

  

   

 (    〈    
   〉   )                                

With accuracy  

                                ‖   
 〈    

   〉 ‖
 

                                                     

Then for constructed     

       ∑ ∑   
   

∑      (    〈    
   〉   )

  
   

  

   
 
                          

and we have  
‖    ‖  ‖             ‖   
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                      ‖       ‖  ‖     ‖  

                               
 

 
   ‖       ‖                                            

 The term ‖       ‖  in above can be arbitrarily small, because (2.19) and 

(2.20) imply 

‖       ‖  ‖∑ ∑   
   

 〈    
   〉  ∑      (    〈    

   〉   ) 
  
   

  

   
 
   ‖

 
  

 ∑ ∑ |  
   

|   |〈    
   〉     

|
  

   
 
     ∑ ∑ |  

   
|

  

   
 
     

Then inequality (2.21) imply ‖     ‖            
 

 
   

and by (Lemma 2.11)            
 

 
       ∑ ||     || 

 
    

Then           
 

 
   ∑ ||     || 

 
   .  " 

Theorem 2.23 

            "For any         ,     there is a regular, one hidden layer    ,      , 

of the form       with       and the hidden unit number   ∑     
   

  (     
   

)        such that 

‖       ‖      
 

   if and only if            

Proof: let           

From  ‖    ‖            
 

 
   ‖    ‖    

 

 
   

And by           
 

 
   ∑ ||     || 

 
    

We obtain      
 

 
    (

 

  )  . " 
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