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Abstract

Let 5 be two disconnecting arc and f: 5 — 5 be a continuous map . Suppose f has a fixed point
and a periodic point of period n for some odd integer 7 = 1.Then for every integer 11 = 1, f has a

periodic point of period m . If f have periodic points of period  and 5 where * # = are odd integer
numbers , then the set of periodic points are infinite . Finally , if the set of periodic poir_lts is finite , then
there are two integers * and 5 with 7 = 1 and 5 = 0 such that the set of period is {2'.r|{ = 0}.
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1.Introduction

In the recent years, many papers (and even some books) studied the periodic
points on one dimensional spaces , for examples Real interval and circle etc.) .

( Sarkovskii ,1964) proved that if f: R — R continuous map and f has periodic

point of period m then f has a periodic points of n when m = n ( in SharkovskKii's

ordering). (Bolck 1980,1981) improved the theorem sarkovski to maps of the circle .
(Bolck, 1980) proves that if has a fixed point and f has periodic point of period 7 ,

then for every integer m = n, f has a periodic point of period m .(Alseda et al.,1990)

introduced new space which called it disconnecting interval .
In our work , we define a new space 5 , we call it two disconnecting arc . The set

of periodic points studied on the new space .

2.Preliminary

In this section , we introduce the definitions and notations which we use in this
work. Frist , we define a new space .

Let X be a topological space. We say that X has two disconnecting arc if

3] © X such that J is an open subset of X homeomorphic with an open interval of
R and for every connected component of X which contains J then for all x = y € [
the set ¥ — {x, ¥} has at least two connected components.
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Definition 2.1
Let a, b €5 with @ = b We write [a, b, (a, b), (a, b], or [a, b) to denote the closed ,

open, or half-open arc from a counterclockwise to b.
Definition 2.2
Let L and K be proper closed arcs on 5 and let f:5 — 5 be a continuous map. We say L f-

covers K if for some closedarcJ = L, f{J) = K.

Definition 2.3
The orbit of p is the set of points »,f(p),f*(p),... , and is denoted by

orb(p) = {f™(p)In € N.} where N. = N U {0}. If p is a periodic point of period n ,then
we say that orbit of p is a periodic orbit of period n. We denoted the set of periodic points by
p(f).

Now we define the fixed point and periodic point on 5.

Definition 2.4
We say that p € 5 is a fixed point of f if f(p) = p + fw, where @ is the length of S and

B € Z. And p is a periodic point if f™(p) = p + fw.
Definition 2.5
Leta, b €5, we say that @ o b if a follows counterclockwise to b .

Definition 2.6:
We say that f: 5 — S is monotone if f has one of these properties : increasing or decreasing.

1)We say that f:5 — 5 is increasing map if Va,,a, €5 such that a; o a,, then
f(ay) = faz).

2) We say that f:5 —+S is decreasing map if Va;,a, €5 such that a; o< a,, then
f(ay) = f(ay).

Definition 2.7:

Let f:5 — 5 and let P = {p,, ....p, } be a periodic orbit of f of period n. We say P is
labeled in order if fork = 1,...,n— 1, PN (p.,Prsy) = Gand PN (p,.p) =0.1In
this case we define the arcs determined by Fto be the n closed arcs
Ay = [pupl Ay = [P2pal v Ay = [Pa-1 P14, = [P vy ]

3.Main Result:
In this section , we prove some propositions and a theorem which study the
periodic points on the two disconnecting arc space.
Proposition 3.1 :
Let f:5 — 5 be a continuous map and let L be proper closed arc on 5 with endpoints

e,and e,.Suppose that f{e,) = e; and f(e,) = e, and e; # e, Then if f is increasing
then L f —covers [eq,e,] and if £ is decreasing then L f —covers [e4,e5].

Proof: Let € = {x € D|f(x) = e;}. Since e; EC. Then C # @. Let a be a closed
element in C such that [a,e,] N € ={a}. Let D = {x € [a,e,]| f(x)= e,}. Since
e, € B. Then B # ©. Let b be closed element in D such that [a,b] N D = {b}.We
have f(a) = ey, f(b) =esand if x € (a. b) then f(x) #e; and f(x) #=e,. If
] = [a. b] .Since f is increasing, then f(J) = [es.e4] ,and hence L f —covers [e3,€.]
or f is decreasing ,then f(J) = [e..e3] ,and hence L f —covers [e..e;5].
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Proposition 3.2
Let f: 5 — S be a continuous map . Let L and K be proper closed arcs on S such that L

f-covers K. Suppose [ is a closed arc with J < K. Then L f-covers J.

Proof. By definition 2.2 , there is a closed arc I =L with f(I) = K. Let
] = [e3.e4] . There are points e, € I and e, € I such that f(e,) = ez and f(e,) = e, and
g5 # €. Let I; be the closed arc with endpoints £4and &, such that I; = I.By proposition
3.1 either I; f —covers [e5,e.] or I, f —covers [es.e5]. Since I, © I'and f(I) =K, I,
cannot f-cover [es.e3]. Hence I, f —covers [es.e4].Since I; = I < L, L f—covers
[e3.e4].
Proposition 3.3

Let f: 5 — S be a continuous map . Suppose L is a proper closed arc on 5 such that L

f-covers L . Then f has a fixed point in L.

Proof: By definition 2.2 , for some closed arc Jf © L with f(J) = L. There are points
a € Jand b € Jsuch that f(a)and f(b) are the two endpoints of L. Let K be the closed arc
with endpoints a and b such that K = J. By continuity f has a fixed point in K.

Proposition 3.4
Suppose that f:5 —+ 5 be a continuous map. and suppose E;, E,,..., E, are proper

closed arcs on S such that E, f-covers E,,,for k = 1,...,n— 1, and E,, f-covers E,
.Then there is a periodic point y of f such that ¥ € Ey, f(¥) € E;,..., f* 1 (¥) € E,.
Proof:  Since E, f —coversE,.,. Then there is L,€E, such that
f(L,)=Ey.fork = 1,...,n— 1. Thenif y € L, then f(¥) €E, andso f(¥) € E,
, thus by induction on n, f®* *(v) € E,. Since E,, f-covers Ey, f*(¥) € E, .Then by
proposition 3.3, E; f —covers E;.Thus f™ has a fixed point on E;, and then f has a fixed
point £™.That is f has a periodic point of period 7 .
Proposition 3.5

Let f: S — 5 be a continuous map. Let P = {p,,p;, ..., p,,+ a periodic orbit of f of

odd period n = 3. Suppose Pis labeled in order and let A4,, 4,, ..., 4, be the arcs
determined by P. Suppose that for some sandk with s € {1,...,n}and
ke{1,....,n}, A, does not f-cover 4, forall [ € {1,...,n}with [ # s, and 4; does not
f-cover 4, forall 1 € {1,...,n}withl #i. Thens = i.

Proof: Suppose that s # i. Let x€ A, then A, =@ and let y € 4, | then
A #0@ Then x=#y. Let C=Pn(x,y) and D=Pn(y,x) . Then
C+0,D+0,CnD=0GandCuUD =P,

If f(a)EC for some a €C then by hypothesis and proposition(3.1),
fC)=f(Pn(xy)) € FleINF((x.¥)) = (x.¥) =C ,and hence f(C) = C.Which
contradiction the fact that P is a periodic orbit . This implies that f(a) & C for all
a € C. Thus f(C) = D.In the same way we can prove that f(D) = C. Since f maps P
onto P we have f(C)= Dand f(D) =C.Thus € and D have the same number of
elements. Since by assumption C nD =@ and C U D = P this contradicts the fact
that P has an odd number of elements. From this we get s = i.

98



Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(26): 2018

Proposition 3.6
Suppose f:5 — 5 be a continuous map and f aperiodic orbit P = {p;.py, ... P, }

of odd period n = 3. Suppose F is labeled in order and let 4,, 4,, ..., 4,, be the arcs
determined by P. Suppose also that f has a fixed point x. Then f has a fixed point y
with the property that if A4; is the arc determined by P with ¥ € 4, , there is some
s € {1,...,n} with s = isuch that 4, f-covers 4,.

Proof: Suppose that x € A4,,. Since the conclusion of the proposition holds with
x = y .So suppose that for each s € {1,...,n} 4, does not f-covers 4,. Let m be the
smallest positive integer such that if f(p;) = p, thenk <j. Notethat2 < j < n,
sol =j— 1 = n — 1 Inparticular j —1 #+ n. Since Ay does not f-covers 4,
it follows from Proposition3.1 and Proposition3.2 A, , f-covers A;,_,. By
Proposition3.3 f has a fixed point x € 4;_, . Since A, does not f-covers A, for all

se{1,...,n} it follows from proposition3.5 that for some s € {1,...,n} with
j=m—1, 4, f-covers Ay

Proposition 3.7
Let f:5 —+ 5 be a continuous map and let P be a periodic orbit of f of period k&

where k = 3. Suppose that {E;. ..., E.} is a collection of closed arcs with 2 < s < k
such that
1) For each j € {1, ..., s} ,there are no elements of P in E,",
2) Wi#j,E nE =0,
3) If j € {2, ..., s} the endpoints of E; are in P,
4) if b is an endpoint of E;, either b € Por f(b) = b + Bw, where w is the length
of 5and f € £,
5) foreachj € {1,...,5 — 1}, E, f-covers E;sy,
6) E, f-covers E; and M_ f-covers Ej.
Then for any positive integer n > s, f has a periodic point of period n.

Proof: Let n = =.Suppose that n # k , since P is a periodic orbit of f of period
k.Then f has a  periodic points  of  period k . Let
FR=E,F=E,..F =B F 1= EpFy sy = B3 . By =F, = E. By
proposition (3.4 ) there is a periodic point y of f such that
yEF,f(¥Y) EF,....f"(¥) € F,Since  y €E, f(y) € Ey, .. f"71(¥) € E,
and since if i #j ,E;” NE;” = @ and j € {2, ..., 5} the endpoints of E, are in P, we get
that y is not a fixed point of f .

We may assume that v € P.To prove this, we assume that n = s + 2. Then
F, = F, = F; = E,. Hence v, f(¥), f*(¥) € E, . Since P is a periodic orbit of period
k =3 and by the hypothesis for each j € {1, ...,s} ,there are no elements of P in
M}f,we get that y & P.Suppose that n <=+ 2.Then n <k + 2.Since n # k and
k = 3, nis not multiple of k .Since f"(¥) = ¥ + fw, where w is the length of S and
B EZ, wegety &P, Since f(v) # v+ fw, where @ is the length of S and f € Z.
and y € P and y € E,.Then from(4) f(y) € E, . Also since f*(y) =y + fw & P for
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any positive integer + < n, f7(v) € P, and f"(v) # y + fw, where w is the length
of 5 and § € Z.Therefore by(j € {2, ..., s} the endpoints of E; are in P if b is an
endpoint of E,, either b € Por f(b) = b + fw where w is the length of 5 and 5 € Z)
for any positive integer » < n, f7(¥) is not an endpoint of any of the arcs Ej, ..., E. .
It follow from this and E ' nE =@ for i=j ,and from the

fact,

VEE,f(y) EELf (¥) €Ey, ... fP(¥) €EL f* " (y) €
Ey e f"N(¥) €E,

that y is a periodic point of period n.

Theorem 3.8
Suppose f:5 —+ 5 be a continuous map . Suppose f has a fixed point and a

periodic point of period n for some odd integer n = 1.Then for every integer m>n , f

has a periodic point of period m.

Proof: Since f has a periodic points of period n .Then f has a periodic orbit
P ={py,ps ....p,} Of f of period n. Suppose Fis labeled in order and let
A, A,, ..., A, be the arcs determined by P. Since f has a fixed point g. Suppose that
g € A,,.By proposition 3.6 ,we suppose that for some s € {1,2,...,n — 1}, A, f-covers
A,.

Let f(p,) = p; and f(p,) = p,;.We have two cases .

Case 1. either [q,p;1f —covers [q.p;] or [p,, q]1f —covers [p;, q].

Suppose that [g,p,]f —covers [g,p,]. Since [gq.p,] < [q.p,]and the arc
A, C[q.p.] with se{1,2,..,k — 1}.Therefore by  proposition 3.2
[g,p,]1f —covers[q,p;] and [gq,p,] f —covers each arc 4, withs € {1,2, ...,i — 1}.We

will use proposition 3.7 from now to prove the conclusion of the theorem and by
induction on 7 .

Now suppose that for some s € {1,2, ...,i — 1}, A. f—covers 4, . For k=2,
E, = [q.p,] and E, = A, such that (1) ¥s € {1,2}, there are no element of P in E_°
2) E,” N E,” = @, 3) the endpoint of E; is in P, 4) Since q is an endpoints of E, ,
then f(gq) = g + fw , 5) for each s € {1}, E, f-covers E,, 6)E, f-covers E; and E, f-
covers E,.Therefore by proposition 3.7 ¥m = k, f has a periodic point of period m.
Thus we suppose that for all s € {1,...,i — 1}, A.does not f-covers 4, .Since A,
f —covers A, for some s € {1,...,n — 1}, this implies that i — 1 <~ n — 1and hence
i<n. For k=3. Since i<n. Let v be the smallest integer such that
flp,) € {py.ps ..., p;} for some integer v with 2 < v < i and if necessary that
flp,—1) €{py.ps, -..p;} . Let f(p,) =p;. Since 4,_; does not f-covers 4,, by
proposition3.1 ,proposition3.2 , 4,_, f-covers [f(»,_1). ;] . Hence for each integer s
with i<=s=<I[-14,, fcovers 4, .Note that by choice of p, and p,,
i =1 —1.Suppose that for some positive integer s with i =s =1 — 1, A4_ f-covers
A LetF, = [q,p,],F, = A,_,and F; = A_.Then by proposition 3.7 ¥m = k, f has
a periodic point of period m. In the same way the theorem hold for k ==, by using
the fact that for some s € {1,...,n— 1}, A, f-covers 4,, eventually we get a
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collection of closed arcs {F;, F;, ..., F,.} with k < n, such that (1),(2),(3)and (4) from
proposition3.7 .Then ¥m = k, f has a periodic point of period m.

Case (2): [q.p,] does not f —covers [g,p;] or [p,.q] does not f — covers [p;. q].
Then by proposition3.1 [q.p,] f —covers [p;.q] and [p,.q] f —covers [q.p;].We
claim that 4,, = [p,.p,] f —covers4,.To see that , note that since [g,p,] f —covers
[p..q] , there is a point e€(g.,p;] such that f(e)=p, but
f(x) =p, ,.Vx € (q,e).Since f(g) = q and f(e) = p,.Then by proposition3.1 [g, €]
f —covers [q.p,] or [g.e] f —covers [p,.q] .Since by the assumption [g,p,] does
not £ —covers [g.p.].By proposition3.2 [g,e] does not f —covers [g.p,] and hence
[q.e] f —covers [p,.q] .Then by the definition 2.2 , there is K < [g,e] such that
f(K) = [p,.q] and so [p,.q] = f([q.€]).Suppose that e, € (g,¢e), f(e,) & 4, .Since
f(q) = q + few where w is the length of 5 and £ € Z, then f(g) € A4,,, by continuity ,
for some v £ (g, ¢) ,either f(v) = p,or f(¥) = p, .Since e; € (g, e), it follows from
the choice of e that f(¥) # p,,. Hence f(v) = p,. It follows from the choice of e, that
f([g.e]) is a proper closed arc on S and p, is an endpoint of f([g,e]). Also
g € f(lg.e])and py; € f([g.e]). Theneither 4, = f([g.e]) or [q.2,] = F([g.€]).

If [q.7,] < f([g.e]).Then by the prove of proposition3.2 and using the fact
f(lg.e]l) #5. We have [g,e] f —covers [q,p,] . Since [q.p;] = [q.p,].Thus by
proposition3.2 [g.e] f-covers [gq,p;] which contradiction the assumption . Hence
A, © f([g.e]).Since f(lg.e])#5. Then by proposition3.2 [gq,e] f-covers
A, .Therefore A,f- covers A4,.

We shall prove that our claim holds if f(¥) & 4, for some ¥ € (g.e). Hence
suppose that f([g.e]) = 4,,.We prove that 4, f- covers 4, ,if (v) & 4, for some
¥ € (g, e). Hence suppose that f([g.e]) = 4,..

Since [p,.ql f —covers [q.p;], there is a point z€ [p,.q] such that
f(z) =p,,but f(x)#p,.¥x E(z.q)In the same way of the proof of
A, © f(lg.e]), we can proof that [p,.q] < f([g.e]).Also we suppose that
f(lz.q]) = A, ( by the same way) to see that we may assume that f([g.e]) € 4,,.
Thus f([z.q]) = 4, .Since [z,e]) = A, .Therefore A,f- covers 4,. Since [g.p,]
f —covers [p;.q], A,f- covers[p;.q]l.We use the prove of proposition 3.7 and
induction on n .Since [p,.q] f—covers [q.p;], A,f-covers[q.p;].Then by
proposition 3.2 for each integer s with 1 <s=<j—1ori<s =<n-—1 A,f-covers
A,

Suppose that for some integer s with 1=s=<j—1ori=s=n-—1 A_f-
covers 4,. Fork =2 | let F;, = A, and F, = A_. Thus from (1),(2),(3) and (4) from
proposition 3.7 hold . So suppose that for each integer s with 1=<s=<j—1 or
i=s=n—1 A4, does not f —covers 4,. Since A_f-covers A, , for some integer s
withl=s=<j—1ori=s =<n— 1thisimpliesthatj < i.

Since either f({py, ...p;} € {Pi s Put OF f({Pe - 2o }) € {Py, oy} - Then
{py, .2, } is a periodic orbit and j < i and use the fact that n is odd in the case
j=1i—1 Wesuppose that f({p,, ....p;} € {p;, .. p,} - Let r be the smallest positive
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integer such that f(p,) € {p; -..P,}. Since A,._, does not f-covers A,.Then
2=<r<=jand A,_,f-covers the arc [f(p,.).f(p,_;)] . Hence A,_, f-covers the arc
[f(p,).p;]. Let f(p,) =p,. Then t=i—1 and A,_,f-covers each arc A_with
t=<s=<i—1

Suppose for some integer with g =s =< j—1, A, f-covers A,. For k=3,
F,=A,F, =A,_;and F; = A_. Thus (1),(2),(3) and (4) of proposition 3.7 hold . By
the same way we can prove that for kX =n ,using the fact that for some
se{l,.n— 1} A, f-covers A, we eventually obtain a collection of closed arcs
{Fj,..,F,} with k == such that (1),(2),(3)and (4) of proposition 3.7 hold . Then
vm = k, f has a periodic point of period m.

Proposition 3.9
Let f: 5 — 5 be a continuous map . Suppose that f have periodic points of period r and s

where rand s are odd ,» # = .Then p(f) is infinite .

Proof: Let r,5 € Z such that ¥ # s .Suppose r < 5. Let H = f".Then H has a fixed
point say p and for some integer m2 = 1 , H has a periodic point of period m say g .Then
H(p) =f"(p) =p+ fw, where w is the length of 5 and B E€Z and
H™(q) = (f")*(g) = q + Bw , where w is the length of 5 and # € Z.Then by theorem3.8
the set of period of H is infinite, and hence p(f) is infinite.

Proposition 3.10
Suppose f: 5 — 5 be a continuous map and g(f) is finite .Then for some integers

r,swith» = land s = 0, p(f) < {2%.7]i = 0).

Proof: Let r be the smallest period of f such that f"(p) = p + Sw, where w is the
length of S and £ € Z. Since the set of period f is finite , it enough to prove that if
f has periodic point g of period k of f such that f*(g) = g + fw, where w is the
length of S and f € Z.Then k = 2.+ for some i = 0.

Let g be a periodic point of period k . Let » = 2™.1 where I isodd ,l = 1 and
m=0and let k=2'.t where ¢t is odd ,t=1,j=0.Then
Frp)=Ff"""(p) =p+ Pw, where w is the length of S and fE€Z and
F¥(q) = f¥*(q) = q + fw .Let v be the largest element of {2™,27/} and H = f*.
Then by theorem 3.8 p(H)is finite and I, t € p(H) and I and t are odd .By proposition
3.9 I = t.Since r is the smallest period of f and [ = t, we have j= m.Let
i=j—mTheniz0andk =2/t =2/"™m%™ [ =2/"™ 2m [ = 2% r,
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