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Abstract 
In this paper we study singularly perturbed with initial problem of the system with two linear 

ordinary differential equations, each of which contains small parameter in its derivative and quadratic 

the same small parameter in one of them. A uniform asymptotic expansion is constructed on a time 

interval solution of the problem. obtained formulas for the terms of internal expansion, they allow us to 

find them only through algebraic operations, finally we give examples which related with our subject. 
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 الخلاصة
في هذا البحث درسنا مسألة الاضطراب المنفرد بالشروط الابتدائية لنظام من من المعادلات التفاضلية العادية الخطية، كل 

معلمة صغيرة في مشتقاتها والتربيعية من نفس المعلمة الصغيرة في واحد منهم. تم بناء توسيع منتظم تناظري على  منها يحتوي على
فترة من الزمن لحل المسألة. حصلنا على صيغة من الحدود للتوسيع الخارجي التي تسمح لنا بايجادها من خلال العمليات الجبرية، 

 عنا.وأخيرا قدمنا أمثلة التي تتعلق بموضو 

 ري ، الاضطراب المنفرد، الدالة الحدودية، المعلمة الصغيرة، المخطط الامامي.ظ:المعادلات التفاضلية،التقريب التناالكممات المفتاحية
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I.Introduction: 
The subject of differential equations with small parameeters high derivatives 

arise in the modeling and study of physical, biological, chemical phenomena and 

processes. This kind of equations are also found in automatic control theories, 

nonlinear oscillations, in gas dynamics, in the description of gyroscopic systems. 

These equations are called singularly perturbed. Their feature is that the order of the 

degenerate equation resulting from the initial with zero values of the parameeters, 

lower than the order of the original equations, as a consequence, the solution of the 

degenerate equation can not satisfy all the conditions specified for the initial equation. 

The problem as the formula: 

  

  
  (   )        (  )     

Is called Cauchy problem with intial point x0. 

Primarilies of the theorey of singular perturbtions are the works of              

[Tikhonov ,1948,1950,1952], in which a general statement of the problem is given the 

Cuachy problem of systems of nonlinear ordinary differential equations with small 

parameeters for derivatives and the limiting transition from the solution for the orignal 

problem to the solution of the degenrate problem when the parameeters tend to zero. 
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Construction of approximation solutions of singularly perturbed problems is 

carried out in many ways, both numerically and asymptotically. The most widely 

accepted among the asymptotic methods are the method boundary functions 

[Vasil'eva ,1969,1959,1963,1973,1990,1962]. 

In this paper we consider the following singularly perturbed problem. The 

Cauchy problem of a system with two ordinary differential equations with quadratic 

small parameeters for derivatives. The behavior of the solution for the problem at a 

finite time interval is studied. The novelty of the problems of this study is that small 

parameeter that is in the two equations of the system each for its derivative, tend to 

zero independently of each other. In this way, we are talking about the construction of 

an asymptotics of the solution that is uniformly suitable for any relations between 

small parameeters. 

 

II.view Problem 
Consder the system: 

  ̇   ( )   ( ) 

   ̇   ( )   ( )  
}      ( ) 

 ( )    
 ( )    

}          ( ) 

Such that a(t),b(t),c(t),d(t), are infinite differential functions on [0,T], satisfy the 

condtions a(t)<0 , d(t)<0 ,  |
  
  

|                 ,   -  

Where  > 0 is small parameeter. 

 

III.The constraction of formula for solution of the problem 

The asymptotic expansoin for the solution of problem (1),(2) will be 

constracted as type:  

 (   )   ̅(   )    (   )

 (   )   ̅(   )    (   )
}   ( ) 

 ̅(   )  ∑       
      ̅   ( ) ,  

 ̅(   )  ∑       
      ̅   ( )   

 

  
  

Now by substituting the expansion (3) in the equations 1-2 and equating 

coefficients which the same power of   we can determine the coffcients of series (3). 

In partcular, the system for finding           coincides with a degenrate system of the 

system (1) (at =0). 

 The remaining coefficients of the expansion (3) are found from systems of 

linear algebraic equations of the form: 

 ( )    ( )      ( )   ( ) 
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Where 

 ( )  [
 ( )  ( )
 ( )  ( )

]      ( )  [
    ( )

    ( )
]   ( ) 

A vector valued unctions        can be expressed in terms of                    

      (        ) . We  note that the systems (4) have an uniquely solution , 

because from the condition (2) we have the relation    ( )         ,   -  

 Further, we expand the functions a(t),b(t),c(t),d(t) in power sereis in 

neighborhoods of the point t=0 with coeffcients  ai ,bi ,ci ,di  [i=0,1,2,…], respectively 

and new variable   . 

 Without loss of generality  view of condition (   ) we assume that a0=d0=-

1. The internal expansion        can be written by the following type: 

  (   )  ∑      
 

     

  
  ( )   (   )  ∑      

 

     

  
  ( )  ( ) 

Such that: 

  
  
   
  
  are a boundary functions in a neighborhoods of t=0 and it satisfies the 

following equality : 

‖  
 ( )‖                       ( ) 

Where  c, are positive constants. 

Substituting equation (6) in equation (1) we obtain : 

   ∑      
   

  

  

 

     

 (∑  

 

   

     ) ∑        
  

 

     

 (∑  

 

   

     ) ∑        
  

 

     

 

   ∑      
   

  

  

 

     

 (∑  

 

   

     ) ∑        
  

 

     

 (∑  

 

   

     ) ∑        
  

 

     

 

 We denote      ( )  [
  
  

  
  ]    ( ) 

 We will seek      (   ) by solving the following systems of differential 

equations with constant coefficients: 

 

  
       ( )    (   )      (   )             ( ) 

Such that: 

    (   )  ∑     

    *   +

   

     [
        
      

] 
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With the conditions: 

    (   )         ( )   (  ) 

    (   )       ( )   (  ) 

   .
  
  
/ 

 Thus the formula of  construction of the series (3) is complete to be proved 

that these series are inded an asymptotic expansoin solution of the problem on the 

closed interval [0,T]. 

 

IV. Estimate of e terms of internal expansion: 

4.1.Definition: 

Let       are eigenvalues of matrix    ( ) then: 

   
      √(    )       

 
 

 

   
      √(    )         

 
 

   
       √(   )        

 
           

Where              

 

 Depending  on the values of       in the matrix   ( ) in definition 4.1, we 

can disscaus the cases: 

1-         are real ,different  with note that          

 In this case we realize its with the following relations: 

i-                

ii-                     

2-          

This case is realized at the conditions:                    

3-       are complex with its conjugate. 

This case is hold e condition:    (  )  
  (   )

 
 
   

   
 



Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(26): 2018 

235 
 

Since : 

 |  |  
      √(   )      

 
 
 (   )

 
 |  |

 
      √(   )      

 
 

     

      √(   )      

   
  

    
         (  )  

  
  

    
 

  

   
  (  ) 

 

4.2.Proposition: 

The exponesial matrix      satisfies the estimate: 

‖    ‖     
 (  ( ) )      

Such that  C0,k are positive constants , it does not depended on     

Proof: 

By using [Lappo-Danilevsky I.A ., 1957 ,p.49) we have : 

           
         

     
(      )   (  ) 

‖      ‖    (   )     (  ) 

In case(1) of estimate we have the inqualities: 

                     (  ) 

By definition of     and equation(15) we obtain: 

       √(   )         

Thus: 

 
‖      ‖

     
  

 (   )

 √(   )        
  

(   )

√(   )        
        (  ) 

Now we note : 

         

     
  ∫ (     (       ))
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  ∫ (     (       ))

 
 

 

    ∫ (     (       ))
 

 
 

   

   
   
 ∫     

 
 

 

     
   
 ∫     

 

 
 

   

 
  
|  |

[ 
   
   

   
 ]     (  ) 

Now by (17) and (18) and by cases (1),(2) we have the eigenvalues of matrix 

A0 satisfy                    and thus  obtain: 

‖    ‖   
‖  ‖

 
  

  
       

  (  )  
  (   )

 
 

Hence    
‖    ‖     

 (  ( ) )      

 

4.3.Example: 

 
  

  
        

  

  
        (  )  

 ( )       ( )        (  ) 

The exact solution of equation (19),(20) have a type: 

 (   )  (   
     )( 

   )  (     ) .
 

    
/  

 
    

  
 
 

 (   )  (   
     )( 

   )  (     ) (
  

    
)  

 
    

  
 
 

These formulas show that in the case when the parameeters   tend to zero, it is 

not possible to represent the solution of the problem in the form of a series of  the 

power of the parameeters with coefficients that depend on the new scale  
    

  
 because 

the factor  
    

  
  does not decompose under exponentials in a power series of  . 

In calculating the asymptotic solution, we find that the external expansion is 

trivial and  internal expansion contains only the principal terms: 
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  (   )    
  ( )   (   )    

  ( ), that means the internal solution identically 

coinciding  with the exact solution by substitution    
 

  
. 
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