

On the (τ^2, τ) –Arcs in PG(2, qq) for $\tau \leq qq$

Mudhir A. Abdul Hussain

College of Education for Pure Sciences, Department of Mathematics, University of Basrah, Basrah, IRAQ

e-mail: mud abd@yahoo.com

*Corresponding author email: mud abd@yahoo.com; mobile:07705750563

$$au \leq qq$$
 لقيم $PG(2,qq)$ في $PG(2,qq)$ لقيم حول الأقواس

مظهر عبد الواحد عبد الحسين

كلية التربية للعلوم الصرفة, جامعة البصرة mud abd@yahoo.com البصرة, العراق

Received: 27/9 /2022 Accepted: 22/12/2022 **Published:** 31/12 /2022

ABSTRACT

In this article the existence of the (τ^2, τ) –arcs in the projective plane of order qq has been proved. For $\tau = qq - 1$, $qq \ge 3$ we have shown that the $((qq - 1)^2, qq - 1)$ –arcs are complete. The existence of the completes (144,12)-arc in PG(2,13), (256,16)-arc in PG(2,17)and (324,18) -arc in PG(2,19) have been found.

Keywords: Projective plane, Complete (\check{k}, τ) – arcs.

الخلاصة

au=qq-1 في هذا البحث تم البرهنة على وجود الاقواس (au^2, au) في المستوى الاسقاطي من الرتبة qq. عندما ور القواس - (144,12) هي اقواس تامة. كذلك تم بيان وجود القوس-(144,12) التام في $qq \geq 3$ المستوي الاسقاطي (2,13) PG(2,13) و القوس-(256,16) التام في المستوي الاسقاطي (2,17) و القوس-(324,18) التام في . PG(2.19) الاسقاطى الاسقاطى

الكلمات المفتاحية: المستوي الاسقاطي, الاقواس (\check{k}, τ) التامة.

INTRODUCTION

In (1947), Bose [8] introduced the concept of the (\check{k}, τ) –arcs in the projective plane of order qq as a set of \check{K} points in a projective plane PG(2,qq) with the following properties: there is at least one line contains exactly τ points from the set \check{K} and every other line contains at most τ points from the set \check{K} . The \check{k} -arc is a set of points \check{K} with τ =2. Bose showed that for qq even the maximal value for which the \check{k} -arc exists in PG(2,qq) is equal to qq+2 and is equal to qq+1 for qq odd. A line that contains i points from the set \check{K} is called i –secant. If there is no $(\check{k}+1,\tau)$ -arc containing the (\check{k},τ) -arc in PG(2,qq) then, a (\check{k},τ) -arc is called complete. A point $\check{Q} \in PG(2,qq) \setminus \check{K}$ is called point of index zero if there is no τ -secant passing through it. In (1956), Barlotti [2] showed that the maximal value for which a (\check{k},τ) –arc exists in PG(2,qq)is less than or equal to $(\tau - 1)qq + \tau$. Many researchers have been interested in finding the maximum value of the (\check{k}, τ) -arcs. Therefore, several methods were used to find the maximum values of the (\check{k},τ) -arcs in PG(2,qq). One of the methods to obtain the maximum value is the classification method of the (\check{k},τ) -arcs. Because of the large number of the (\check{k},τ) -arcs that appear from the study of the classification of the (\check{k},τ) –arcs it is difficult to reach the maximum value. Therefore, it was important to determine the minimum and maximum values of completes (\check{k},τ) -arcs in PG(2,qq). There are many studies of the (\check{k},τ) -arcs in different ways. In (1979), Hirschfeld [6] introduced a method of classification of the (\check{k},τ) –arcs to reach to the maximum value. The method based on the projectively equivalent of the (\check{k},τ) -arcs (two (\check{k},τ) -arcs \widehat{K}_1 and \widehat{K}_2 are projectively equivalent in PG(2,qq) if there exists a projectivity matrix T such that $T(\widehat{K}_1) = \widehat{K}_2$). This method is the best method of classification for small qq. Yasin [4] has been studied the classification of the $(\check{k},3)$ –arcs in PG(2,8) up to projectively equivalent for $\check{k}=1,...,15$. In [7] Abdul Hussain (1997) studied the classification of $(\check{k},4)$ –arcs in the projective plane of order five based of the type of the i-secant distribution of the (\check{k},τ) -arcs method. In his study, he found the number of inequivalent $(\check{k},4)$ -arcs in PG(2,5)for all k = 6,...,16. In [13], Hamed and Hirschfeld showed that there exists a complete (48,4)-arc in the projective plane of order 17 while other studies of the (\check{k},τ) -arcs in PG(2,qq) can be found in ([7],[8],[9],[10],[11],[12],[13]). In this work, the researcher introduced a new kind of

<u>info@journalofbabylon.com</u> | <u>jub@itnet.uobabylon.edu.iq|www.journalofbabylon.com</u> ISSN**: 2312-8135 |** Print ISSN**: 1992-0652**

 (\check{k},τ) -arcs when $\check{k}=\tau^2$. Large completes (τ^2,τ) -arcs in PG(2,qq) have been found for qq = 13,17,19.

For a (\check{k}, τ) -arcs \check{K} in PG(2, qq), let r_i denotes the total number of i -secants of \check{K} and ρ_i denotes the number of i –secants through a point $\check{Q} \in PG(2,qq)\backslash \check{K}$.

Definition 1. [3] The *i* -secant distribution of the (\check{k}, τ) -arc \check{K} is defined to be the $(\tau +$ 1) -tuple $(r_{\tau}, r_{\tau-1}, ..., r_0)$.

Definition 2. [3] The i –secant distribution of the point $\check{Q} \in PG(2,qq) \setminus \check{K}$ is defined to be the $(\tau + 1)$ -tuple $(\rho_{\tau}, \rho_{\tau-1}, ..., \rho_0)$.

Theorem 1. [3] If $\{\hat{P}_0, \hat{P}_1, ..., \hat{P}_{\tau+1}\}$ and $\{\hat{Q}_0, \hat{Q}_1, ..., \hat{Q}_{\tau+1}\}$ are two sets in $PG(\tau, qq)$ such that no $\tau + 1$ points chosen from the same set lie in a prime, then there exists a unique projectivity T such that $T\hat{P}_i = \hat{Q}_i$, $i = 0, ..., \tau + 1$.

Theorem 2. [3] For a (\check{k}, τ) –arcs \check{K} the following equations fulfilled,

$$\sum_{i=0}^{\tau} r_i = qq^2 + qq + 1,\tag{1.1}$$

$$\sum_{i=1}^{\tau} i \, r_i = \check{k}(qq+1), \tag{1.2}$$

$$\sum_{i=2}^{\tau} \frac{1}{2} i (i-1) r_i = \frac{1}{2} \check{k} (\check{k} - 1)$$
(1.3)

Theorem 3. [3] For a (\check{k}, τ) –arcs \check{K} the following equations fulfilled,

$$\sum_{i=0}^{\tau} \rho_i = qq + 1,\tag{1.4}$$

$$\sum_{i=1}^{\tau} i \, \rho_i = \check{k},\tag{1.5}$$

$$\sum_{\check{Q} \in PG(2,qq) \setminus \check{K}} \rho_i = (qq + 1 - i) r_i \tag{1.6}$$

Lemma 1. [3] If a (\check{k}, τ) -arc \check{K} is complete then $(qq + 1 - \tau)r_{\tau} \ge qq^2 + qq + 1 - \check{k}$, with equality if and only if $\rho_{\tau} = 1$ for all $\check{Q} \in PG(2, qq) \backslash \check{K}$.

Theorem 4. [3] A (\check{k}, τ) -arc \check{K} has maximal value if and only if every line in PG(2, qq) is a 0 – secant or an τ – secant.

2. The (τ^2, τ) -arcs in PG(2, qq).

The researcher studied special kind of the (\check{k}, τ) -arcs when $\check{k} = \tau^2$ to find large completes (τ^2, τ) -arcs for some qq.

Theorem 5. There exists the (τ^2, τ) –arcs in PG(2, qq).

Proof. Let $\check{Q} \in PG(2,qq) \setminus \check{K}$ any point has the i-secant distribution $\rho_{\tau} = \tau$, $\rho_{\tau-1} = \rho_{\tau-2} = \cdots = \rho_1 = 0$ and $\rho_0 = qq + 1 - \tau$. Then every line passing through the set \check{K} contains at most n points, counting the points on the i-secants passing through the point \check{Q} led to τ^2 points in the set \check{K} .

Theorem 6. There exists the completes $((qq-1)^2, qq-1)$ -arcs in PG(2, qq) for $qq \ge 3$.

Proof. The existence can be gotten from theorem (5). To prove the completeness note that from theorem (5) the number of (qq-1)—secants passing through the point \check{Q} is qq-1 and the number of points not on the $((qq-1)^2, qq-1)$ —arc that incident with the (qq-1)—secants is qq. The number of 0—secants is equal to 2, so 2qq points external to the $((qq-1)^2, qq-1)$ —arc and belong to the two 0—secants have been found. Hence, the total number of points not on the $((qq-1)^2, qq-1)$ —arc is 3qq, through each point must passing at least one (qq-1)—secant; therefore there exists no point of index zero. This proves that the $((qq-1)^2, qq-1)$ —arc is complete.

Theorem 7. For a $((qq-1)^2, qq-1)$ -arc in $PG(2,qq), qq \ge 3$ the value of r_{qq-1} is greater than or equal to $\frac{3qq}{2}$.

Proof. From Lemma (1) we have $r_{qq-1} \ge \frac{qq^2 + qq + 1 - (qq-1)^2}{2} = \frac{3qq}{2}$.

Theorem 8. If a (τ^2, τ) -arc \check{K} is maximal in PG(2, qq) then, $\tau = qq$.

Proof. If \breve{K} is maximal then, from theorem (4) every line is a 0-secant or an τ -secant so $r_{\tau-1}=r_{\tau-2}=\cdots=r_1=0$. From equations (1.2) and (1.3) we have

$$\tau r_{\tau} = \tau^2 (q+1)$$
 and $\tau (\tau - 1) r_{\tau} = (\tau^2 - 1) \tau$, it follows that $\tau = qq$.

Theorem 9. For a $(\check{k}, 3)$ –arc in PG(2, qq) the following hold:

$$r_0 \ge qq^2 + (1 - \check{k})(qq + 1) + \frac{\check{k}(\check{k} - 1)}{3}, \qquad r_1 \le \check{k}\left(q + \frac{3}{2} - \frac{\check{k}}{2}\right),$$

$$r_2 \ge 0, \quad r_3 \le \frac{\check{k}(\check{k} - 1)}{6}.$$

Proof. From theorem (2) for n = 3

$$r_0 + r_1 + r_2 + r_3 = qq^2 + qq + 1, (2.1)$$

$$r_1 + 2r_2 + 3r_3 = \check{k}(qq+1),$$
 (2.2)

$$r_2 + 3r_3 = \frac{\check{k}(\check{k}-1)}{2}. (2.3)$$

The maximum value of r_3 is $\frac{k(k-1)}{6}$ it follows that $r_2 \ge 0$. Now, from equations (2.2) and (2.3),

$$r_1 + r_2 = \check{k}(qq + 1) - \frac{\check{k}(\check{k} - 1)}{2}$$

This implies that

$$r_1 \le \check{k} \left(qq + \frac{3}{2} - \frac{\check{k}}{2} \right).$$

Equation (2.1) lead to

$$r_1 + r_2 + r_3 = qq^2 + qq + 1 - r_0$$

Substituting into the equation (2.2) we get that

$$r_1 + 2r_3 = \check{k}(qq+1) - (qq^2 + qq + 1) + r_0$$

By subtracting equation (2.4) from equation (2.3) the result is

$$r_3 = \frac{\check{k}(\check{k}-1)}{2} + (qq^2 + qq + 1) - \check{k}(qq + 1) - r_0$$

Since

$$r_3 \le \frac{\check{k}(\check{k}-1)}{6}$$

It follows that

$$r_0 \ge qq^2 + (1 - \check{k})(qq + 1) + \frac{\check{k}(\check{k} - 1)}{3}.$$

The following result holds for $\check{k} = \tau^2$ and $\tau = 3$.

Corollary 1. For a (9,3) –arc in PG(2,qq), $qq \ge 4$ the following satisfied:

$$r_0 \ge qq^2 - 8qq + 16$$
, $r_1 \le 9qq - 18$, $r_2 \ge 0$, $r_3 \le 12$.

Known maximal values of the completes $((qq-1)^2, qq-1)$ -arc in PG(2, qq) are (9,3)-arc in PG(2,4), (16,4)-arc in in PG(2,5), (36,6)-arc in in PG(2,7) and (49,7)-arc in in PG(2,8). The size of the largest (\check{k}, τ) –arc in PG(2, qq) for small qq is given in table (1).

Table (1)

qq	3	4	5	7	8	9	11	13	16	17	19
2	4	6	6	8	10	10	12	14	18	18	20
3		9	11	15	15	17	21	23	28	28-35	31-39
4			16	22	28	28	32	38-40	52	48-52	52-58
5				29	33	37	43-45	49-53	65	61-69	68-77
6				36	42	48	56	64-66	78-82	79-86	87-96
7					49	55	67	79	93-97	95-103	105-115
8						65	77-78	92	120	114-120	126-134
9							89-90	105	128-131	137	147-153
10							100-102	118-119	142-148	154	172
11								132-133	159-164	167-171	191
12								145-147	180-181	184-189	204-210
13									195-199	205-207	225-230
14									210-214	221-225	244-250
15									231	239-243	267-270
16										256-261	286-290
17		·									305-310
18											324-330

To construct the complete (144,12)-arc in PG(2,13). Let the irreducible polynomial over Galois field of order 13 is given by $f(x) = x^3 - x^2 - 2$. Then P_1 =(1,0,0), P_2 =(0,1,0), P_3 =(0,0,1), P_4 =(1,1,1). Let the 12-secant ℓ_1 contains the two points P_1 , P_2 and the 12-secant ℓ_2 contains the two points P_3 , P_4 6. The common point of the two lines ℓ_1 and ℓ_2 is P_4 2=(1,1,0) \in $PG(2,qq)\setminus K$. Then the union of all points on the remaining ten 12-secants passing through the point P_4 2 with the points on the two 12-secants ℓ_1 and ℓ_2 form (144,12)-arc in PG(2,13). There is one point on each 12-secant then, the number of points on the 12-secants is thirteen. The remaining points not on the (144,12)-arc are the points on the 0-secants passing through the point (1,1,0). The number of points on the two 0-secants is twenty six. Through every point on the 0-secant must passing at least one 12-secant. This show that there is no points of index zero so the (144,12)-arc is complete. We will refer to the point P_i by its index i.

The points that form a complete (144,12)-arc in PG(2,13) with i –secant distribution (79,59,33,9,1,0,0,0,0,0,0,0,0,0) are given by the following set

14,44,45,52,68,81,85,103,151,163,172,178,54,63,69,74,88,116,118,119,126,142,155,159,30,51,

57,62,76,104,106,107,114,130,143,147,11,39,41,49,65,78,82,100,148,160,169,175,4,32,34,35,58,71,75,93,141,153,162,168,10,22,31,37,56,84,86,87,94,110,123,127,7,20,24,90,102,111,117,122,136,164,166,167,15,27,36,47,61,89,91,92,99,115,128,132,21,33,48,53,67,95,97,98,105,121,134,138,5,6,13,29,64,112,124,133,139,144 }.

Theorem 10. There exists a complete (144,12)—arc in PG(2,13) with i—secant distribution (79,59,33,9,1,0,0,0,0,0,0,0,0,0).

Construction of the (256,16)—arc in PG(2,17): The irreducible polynomial over Galois field of order 17 is given by $g(x) = x^3 - x^2 - 5x - 1$. Then $C_1=(1,0,0)$, $C_2=(0,1,0)$, $C_3=(0,0,1)$, $C_{95}=(1,1,1)$. The point of the intersection of the two 16—secants passing through the points C_1 , C_2 , C_3 and C_{95} is $C_{62}=(1,1,0)$. Then the set of points

187, 191,212,226,231,249,281,290,296,10,23,27,48,67,85,117,126,132,133,159,162,193,205, 213,215,7,12,30,71,77,78,104,107,138, 150,158,160,251,262,275,279,17, 26,32,33,59,93,105, 113,115,206,217,230,234,255,269,274,6,9,40,52,60,153,164,177,181,202,216,221, 239,271,280, 286,21,53,68,69,98,129,141,149,151,242,253,266,270,291,38,49,66,87,101,106,124,156,165,171 ,172,198,201,232,244,252, ,18,22,43,57,80,112,121,127,128,154,157,188,200,208,210,34,45,58, 83,97,102,120,152,161,167,168,194,197,228,240,248,8,11,42,54,64,155,166,179,183,204,218, 223,241,273,282,288,14,46,55,61,88,91,122,134,142,144,235,246,259,263,284,298,51,75,79,100 ,114,119,137,169,178,184,185,211,214,245,257,265,73,86,90,111,125,130,148,180,189,195,196, 222,225,256,268,276,13,24,37,41,76,81,99,131,140,146,147,173,176,207,219,227,20,29,35,36, 65,96,108,116,118,209,220,233,237,258,272,277 }.

form a complete (256,16)-arc in PG(2,17) with i -secant distribution

Theorem 11. There exists a complete (256,16)-arc in PG(2,17) with i-secant distribution (124,115,45,17,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

Construction of the (324,18)—arc in PG(2,19): The polynomial $h(x) = x^3 - x^2 - x - 4$ is an irreducible over Galois field of order 19. Then $T_1=(1,0,0)$, $T_2=(0,1,0)$, $T_3=(0,0,1)$, $T_{11}=(1,1,1)$. The point of the intersection of the two 18-secants passing through the points T_1 , T_2 , T_3 and T_{11} is T_{315} =(1,1,0). Then the set of points is

92,190,214,220,233,245,261,265,279,294,317,352,357,43,67,73,86,98,114,118,132,147,168,170, 205,210,232,249,258,318,325,8,29,31,66,71,93,110,119,176,179,186,187,285,309,328,340,356, 360,44,47,54,55,153,177,183,196,208,224,228,242,257,278,280,320,342,359,32,56,62,75,87,103 ,107,121,136,157,159,194,199,221,238,247,304,307,14,35,37,72,77,99,116,125,182,185,192,193 ,291,321,334,346,362,366,19,36,45,102,105,112,113,211,235,241,254,266,282,286,300,336,338,

373,39,42,49,50,148,172,178,191,203,219,223,237,252,273,275,310,337,354,10,109,133,204,

139,152,164,180,184,198,213,234,236,271,276,298,324,5,9,23,38,59,61,96,101,123,140,149,206,209,216,217,339,345,358,25,30,52,69,78,135,138,145,146,244,268,274,287,299,319,333,348,

369,33,57,63,76,88,104,108,122,137,158,160,195,200,222,239,248,305,308,21,26,48,65,74,131, 134,141,142,240,264,270,283,295,311,329,344,365,40,64,70,83,95,111,115,129,144,165,167,

202,207,229,246,255,312,322,7,12,34,51,60,117,120,127,128,226,250,256,269,281,297,301,330, 351,13,22,79,82,89,90,188,212,218,231,243,259,263,277,292,313,350,355,4,6,41,46,68,85,94,

151,154,161,162,260,284,290,303,331,335,349 }.

represent a complete (324,18)-arc in PG(2,19) with i —secant distribution (157,129,72,15,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

There is incomplete (τ^2, τ) –arc in PG(2, qq) show in the example (1).

Example 1.

In this example incomplete (τ^2, τ) -arc in PG(2,11) when $\tau = 9$ has been introduced. Let $h_1(x) = x^3 - x^2 - x - 3$ be an irreducible polynomial over Galois field of order 11, then $D_1=(1,0,0), D_2=(0,1,0), D_3=(0,0,1), D_{55}=(1,1,1)$ and $D_{19}=(1,1,0)$. The following set of points

 A_1 ={1,2,3,4,5,6,7,9,10,11,12,13,14,16,17,18,20,21,23,24,25,26,27,28,29,30,31, 32,33,34,35, 36,37,39,40,44,45,46,47,49,52,53,54,55,57,58,60,61,63,65,67,69, 70,71,72,75,76,77,80,81,83,

84,85,86,87,90,92,93,94,95,96,97,98,99,100,103,105,107,108,110,117}

form incomplete (81,9)-arc in PG(2,11) with i-secant distribution (30,38,36,16,10,0,0,0,0,3). The result of the classification of the (81,9)-arc led to one complete (82,9)-arc given by the set of points $M_2 = A_1 \cup \{104\}$ with i -secant distribution (35,38,32,15,10,0,0,0,1,2) and two completes (83,9)-arcs that are not projectively equivalent given by the sets of points $M_3 = A_1 \cup \{42\} \cup \{50\}$ with i -secant distribution (42,34,29,16,9,0,0,0,2,1) and $M_4 = A_1 \cup \{50\} \cup \{56\}$ with i -secant distribution (43,31,31,17,8,0,0,1,0,2).

info@journalofbabylon.com | jub@itnet.uobabylon.edu.iq|www.journalofbabylon.com_ISSN**: 2312-8135 |** Print ISSN**: 1992-0652**

Example 2. There exists a complete (100,10)-arc in PG(2,11) given by the set of points 34,35,36,37,38,39,40,42,44,45,46,47,49,52,53,54,55,57,58,60,61,63, 64,65,66,67,69,70,71, 72,73,74,75,76,77,79,80,81,83,84,85,86,87,88,90,91,92,93,94, 95,96,97,98,99,100,101,102, 103,105,107,108,110,111,116,117,122,124,125,126} with i –secant distribution (56,49,18,7,1,0,0,0,0,0,2).

Conclusion

In this study a new type of the (\check{k},τ) -arcs in PG(2,qq) for $\check{k}=\tau^2$ has been introduced. By studying this type of (\check{k},τ) –arcs we were able to find some maximum values of \check{k} and some large complete (τ^2, τ) -arcs for q = 11, 13, 17, 19. To construct the (\check{k}, τ) -arcs in PG(2, qq) one can started from (τ^2, τ) -arcs to get large complete arcs and if possible get the maximum value for which (\check{k}, τ) –arc exists in PG(2, qq).

Acknowledgments:

I would like to thank everyone who helped me complete this research paper.

Conflict of interests.

Not exists.

References

- [1] R.C. Bose, Mathematical theory of the symmetrical factorial design, Sankhya vol.8 (1947) 107166.
- [2] A. Barlotti, Su k; n-archi di un piano lineare finito, Boll. Un. Mat. Ital. 11 (1956) 553556.
- [3] J. W. P. Hirschfeld, Projective geometries over finite fields, Clarendon Press, Ox-ford, 1979, first edition.
- [4] A. Yasin, Cubic Arcs in the Projective Plane of Order Eight. PhD thesis, University of Sussex, 1986.
- [5] M.A. Abdul Hussain, Classification of (k,4)-arcs in the projective plane of order five, M.Sc thesis University of Basrah, 1997.
- [6] Z.S.Hamed, J.W.P. Hirschfeld, A complete (48, 4)-arc in the Projective Plane Over the Field of Order Seventeen, Baghdad Science Journal 18(4), 1238-1248, 2021.
- [7] A. Ali, Classification of arcs in the Galois plane of order thirteen. PhD thesis, University of Sussex, 1993.

info@journalofbabylon.com | jub@itnet.uobabylon.edu.iq|www.journalofbabylon.com ISSN: 2312-8135 | Print ISSN: 1992-0652

- [8] A. Sadeh, The classification of k-arcs and cubic surfaces with Twenty Seven Lines over the Field of Eleven Elements. PhD thesis, University of Sussex, 1984.
- [9] G. Cook, Maximal (n, 4)-arcs in the projective plane of order 11, Discrete Mathe-matics journal, 313 (2013), 590-594.
- [10] R.Daskalov, New Large (n, r)-arcs in PG(2,qq), Iranian Journal of Mathematical Sciences and Informatics Vol. 17, No. 1 (2022), pp 125-133.
- [11] S.Alabdullah, Classification of Arcs in Finite Geometry and Applications to Operational Research, PhD thesis, University of Sussex, 2018.
- [12] S.Alabdullah, J.W.P. Hirschfeld, A new lower bound for the smallest complete (k,n)-arc in PG(2,qq), Designs, Codes and Cryptography (2019) 87:679683.
- [13] S.Ball, J.W.P. Hirschfeld, Bounds on (n, r)-arcs and their application to linear codes, Finite Fields and Their Applications 11 (2005) 326 336.