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ABSTRACT

Background: Although graph theory plays a significant role in representing the causes of a
problem and the relationship between them to facilitate its solution, there are many problems in our real
lives that cannot be represented accurately due to the inaccuracy and ambiguity of the available data. In
this article, Cayley (SVNG) will define and look into some of its characteristics. In terms of algebraic
structures, we demonstrate a few intriguing characteristics of SVNGs. Additionally, planarity in Cayley
(SVNG)s will be discussed.

Materials and Methods: The single-valued Neutrosophic sets (SVNS) were used, which depend on three
functions from the universal set, say X, to the standard range [0, 1] and emanating from the non-standard
range ]0, 1*[ which the Neutrosophic sets rely on. The Cayley table of algebraic groups was used.

Result: This article introduced the idea of neutrosophic Cayley graphs (NCG) as a combination of graph
theory and algebraic structure, and some of its properties were studied in different environments where
the algebraic Cayley structure exists. For example, it was proven that every reflexive and transitive
Cayley graph is regular and so on.

Conclusion: It can be concluded that a relationship has been built to draw a weighted directed graph for
SVNS that contains three components (truth, indeterminacy, and false). and many interesting features of
the neutrosophic graph (NG) were displayed, such as transitivity and regularity. The planarity of Cayley's
neutrosophic graph has also been demonstrated, and observations and theorems have been formulated in
relation to it.

Keywords: Neutrosophic set, single valued neutrosophic set, algebraic group ,neutrosophic subgroups,
Cayley neutrosophic graphs.
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INTRODUCTION

A recently developed mathematical framework called a fuzzy set (FS) is used to illustrate
how uncertainty manifests itself in trials in everyday life. It was first presented in 1965 by Zadeh,
and the ideas were developed by numerous separate studies [1].
Kaufmann's original idea of a fuzzy graph (FG) was built on Zadeh's fuzzy relations [1,2].
Rosenfeld [2] was the first to present the fuzzy equivalent of some basic concepts in graph
theory. The notion of (FG) complement was defined by Mordeson and Peng [3], who also looked
at several fuzzy graph operations.

Krassimir T. Atanassov introduced the Intuitionistic fuzzy graph (IFG) for the first time in
1994 [4]. In 1983, Atanassov [5], [6] suggested intuitionistic fuzzy sets (IFS) as a popularization
of the idea of fuzz sets. With the single requirement that the sum both grades do not exceed 1.
Atanassov expands on the idea of a fuzzy set (FS) by introducing new element that describes the
non-membership grade v in addition of the membership grade u. IFS offers u and v in varying
degrees that are more or less distinct from one another. In contrast, [7]fuzzy sets only reveal an
element's in a particular set. Even though (IFS)s provides both and that are varying degrees of
independence from one another, the sole prerequisite is that the sum of two degrees is not greater
than 1.

Later, interval-valued fuzzy sets [6] were added to the IF sets notion (Atanassov & Gargov,
1989). Generalizing from (FS) and (IFS)[8], [9](Smarandache, 1998, 1999, 2002, 2005, 2006,
2010) created "neutrosophic sets” (NS). These sets are especially helpful for handling the partial,
ambiguous, and unreliable data that exists in real life. The three features of (NS) are truth (T),
indeterminacy (l), and falsehood (F) membership maps. This idea is crucial in many
implementation disciplines due to the explicit quantification of indeterminacy and the
independence of T, I, F functions. A single-valued neutrosophic set (SVNS) was first proposed
by Smarandache, and the name was first used by Wang et al. in 2010 [10]. Single-valued
neutrosophic relations based on SVNS were suggested by Yang et al

2.MATERIAL AND METHODS
This section goes through some fundamental ideas that must be understood in order to
completely appreciate this work.

Definition 2.1:[11] A directed graph (digraph) is a couple D = (V, A), such that A is the subset
of the collection of ordered pairs of various elements of V. In digraph, a vertex set is nonempty
set that contains all other elements. The arcs of D refer to the elements of A.

In discrete mathematics, the vertex-transitive graph study has a long and famous history. Vertex-
transitive graphs, or Cayley graphs (CG), are well-known examples that have important
theoretical and practical implications. Cayley graphs, for instance, are a great model for
interconnection networks.

Definition 2.2:[10] Assume M is the minimum generating set of the finite group N. The vertices
of a Cayley graph (N, M) belong to N, and the edge set is provided by {(n, nm): n € N, m € M},
where m € M. Two vertices are adjacent if n, = nym

Note: If M generates H but no appropriate subset of M does, then M is a minimally generated set.
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Definition 2.3: Consider that (V, *) isagroup, A ¢ V. Then G =(V,A) is (CG) induced by
(V, x,A),where A = {(x,y):x"1y € A}.

Definition 2.4[12]: Let a set H += @ be given, then a set A = {< h,uy(h) >:h € H} that is
drawn from H is said to be fuzzy set (FS), with u,: H — [0,1].

Definition 2.5: A fuzzy graph (FG) is order triple with the formula G = (V,o,u), where V is the
vertex set, g isa (FS)on V, pis value on o and a(u) A a(v) = u(u,v) foreveryu,ve V.

Definition 2.6 [13]: Assume that X is a universal set. A = {(x, us(x), v4(x)) [x € X}is an
(IFS) on X, such that v4, us: X — [0, 1] are mappings of u, as a membership and v, as a non-
membership with p,(x) + v4(x) < 1,Vx € X.

Definition 2.7 [14]: Assume that X is an unspecific element within a set of points X.

A= {x:Ty(x),14(x), F4(x)}, and Ty, I4, F4: X — [0,1] represent a (SVNS) in X. Such that they
are known as (truth, indeterminacy, and falsity) functions where 0 < T,(x) + (x) + F,(x) < 3,
VxelX.

Definition 2.8: Assume X be SVNS. With respect any subset A, and for ¢ € [0, 1],
1) Aa ={x|Ty(x) = a,I4(x) < a,and F(x) < a}isknown as a- cut of A.
2) Ab = {x|T,(x) > a,I;(x) < a,and F(x) < a} is known as strong a- cut of A.
3) A ={x € X|T4(x) = 0,I,(x) = 0,and F,(x) = 0} is called support of A

Definition 2.9: Neutosophic relationship
R = {{((x,y):Tr(x,y), I (x,¥), Fa(x,¥)) |(x,y) € X X X}

is a neutrosophic set (NS) in X x X , where Tg, Iz, Fgr : X X X — [0, 1], and

0 < Tr(x,y) + Ix(x,y) + Fr(x,y) < 3 is satisfied V x,y € X.

Definition 2.10: let R be used to symbolize a neutrosophic relation R on the universe set.
Therefore
a) R is neutrosophic reflexive if R(x,x) = (1,0,0),Vx € X
b) R is neutrosophic symmetric if R(x,y) = R(y,x),Vx,y € X.
c) R is neutrosophic anti-symmetric if R(x,y) # R(y,x), V X,y € X).
d) R is neutrosophic transitive if R(x,z) = A (R(x,y)VR(y,2)).
e) If the neutrosophic relation R meets conditions a, b, and d is said to be equivalence (EQ)
on X, and it is said to be a neutrosophic partial order (NPO) if the conditions a, ¢, and d
are satisfied.

Definition 2.11: Assume that R represents a neutrosophic relationship on universe X. If the
following criteria are met, R is pointing to a neutrosophic linear order relation (NLO) on X:

(@) R is a neutrosophic partial relation.

() R(x,y) VR (x,y) >0,V x,y € X.
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3. CAYLEY SINGLE VALUED NEUTROSOPHIC GRAPHS
This section introduces Cayley neutrosophic graphs and demonstrates a few properties of it.

Definition 3.1: A (SVN)-digraph, where the underlying digraph G* = (V, E) is represented by
G = (4, B), where
1) The (truth T,, indeterminacy 1, and false F,)-memberships degree of the elements of V
are shown, respectively, by the maps T,, I,, F,:V— [0, 1], and
2) 0<Tu(x;)+14(x;) + F4(x;) <3 foreachx; €eVandi=1,2,3..,n.

3) The functions Ty, I, F : V xV — [0,1] are known by comparative equations
Tp(x; %) < Ta(x:) ATa(x;)
Ig(x; %) < ILi(x) A Li(x), and
Fp(x;x;) = Fo(x) v Fu(x))

indicates the (T, I, Fg)-membership values of the edge (u;, u;) € E, when
0< TB(XLX]) + IB(XLX]) + FB(xlx]) < 3, V(xlxj) € E, l,] = 1,2,3, (R
We call A,B as the (SVN)-set of vertex V and edges E respectively. We can write

B(X1y):( TB (X, y)r IB (X, y); FB (x, y))

Remark 3.2 : Assume a SVNG G = (A, B) with underlined graph G* = (V, E). For any pair of
vertices x,y € V are known as adjacent if and only if the following comparative of the edge and
vertices neutrosophic values satisfy the three comparative equations.

Definition 3.3: Take G to be SVN-digraph.
An indegree of x € V(G) is known as
ind(x) = (indT(x), indI(x), indF (x)), where

indT (x) = Z Tg(xy) ,indl(x) = Z Ig(xy) and indF(x) = z Fg(xy)

xX£y X+Yy X+y
In similarly way, out-degree of x € V(G) will be
outd(x) = (outdT(x), outdI(x),outdF (x)), where
outdT (x) = Z Tg(yx) ,outdI(x) = z Iz(yx) and outdF(x) = z Fg(yx)
X+Yy XFYy X#y

Remark 3.4: A SVN- digraph is said to be
1) Out-regular if outd(x) = outd(y), Vx,y € V(G)
2) In-regular if ind(x) = ind(y),V x,y € V(G)

Example 3.5: Let the SVN-digraph G of G* = (V,E) be given, where V = {D, C, B, A},
E = (4B, 4D, BC, DC, CA}.

It is easy to note that from the following SVN - digraph it is in-regular

digraph but not out-regular digraph.
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Definition 3.6: Consider the group (H, *)and S c H,S # 0.
The Cayley SVNG G = (V,R) is a neutrosophic graph with V =H and if

(0.3,0.5,0.7)
A

(8'0°¢0°Z0)

‘D

(0.2,0.3,0.8) B(0.5,0.3,0.4)
=0

(]
+€a“3
>0

¥

(0.3,0.3,0.4)
Figure: 1 in-regular neutrosophic graph but not out-regular

(0.1,0.1,0.4)

€7 {0.1,0.2,0.4)

(0.3,0.4,0.2)

A = (T4, 14, Fy) be SVN-subset of V , R(x,y) be SVN- relation on V is specified as

Example 3.7: Assume the group (H,*) was given ,where H={1,3,5,7}, and
*:H— H defined by *(a,b)=(axb) mod 8, and let S={3,5}<H then G=(H,R) is Cayley graph with

R(x,y)=A(x"'y)|x,y € Hand x"'y € N}.

vertices H, A=(Ty, 14, F4) be single valued neutrosophic subset of H,
and ab € Rwhere b =saVa,b € Hands =a"'h € S.Then

(T, Ly, F) (1) = (0.3,0.3,0.7), (T, Ly, F4)(3) = (0.5,0.4,0.3),
(T4, Ly, F)(5) = (0.4,0.4,0.6), (T4, 11, F4)(7) = (0.5,0.3,0.6)

X 1 1 3 3 5 5 7 7
y 3 5 1 7 1 7 3 5
S=xly |3 5 3 5 5 3 5 3
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(0.3,0.3,0.7)

1 (0.3,0.3,0.7)
5(0.4,0.4,0.6)

(0.3,0.3,0.7)

(0.3,0.3,0.7)

3(0.5,0.4,0.3)

7
(0.5.0.3,0.6) (0.3,0.3,0.7)

Figur 2: Cayley regular graph

Fig. 2 makes it clear that G = (H,R) is a regular Cayley neutrosophic digraph. Additionally, each
directed edge's strength is described by the relation “R” in the aforementioned description.

Definition 3.8 [6]: A semigroup is an algebraic structure (S,o) that meets the criteria listed
below:

1) aeb €S
2) VYa b, c€eS

Definition 3.9 [6]: Consider a semigroup (S, *) and A" = (T4, 1,7, F4) is a neutrosophic subset
of S. Thereafter A’ known as neutrosophic sub-semigroup of S if the neutrosophic comparison
conditions for edges and vertices are met.

Theorem 3.10: Every (CNG) G is vertex-transitive.
Proof. Suppose that a, b € V, and 8:V — V defined by ¢(x) = ba™lx,Vx € V. Obviously
@ isabijective function. vV x,y €V,
R(6(x),8 () = (Rr(8 (x),6()), R;(6 (x),8 (), Rr (6 (x), 6())).
Now R;(0(x),08(y)) = Rr(ba™lx,ba™1ly)
= Tu((ba™ ')~ (ba"'y))
= Ta(x"'y) = Rr(x,¥).
Ri(8(x),8()) = R;(ba~'x,ba"'y)
= Iy((ba~'x)~!(ba™"x))
= I4(x7'y) = R/(x,y),and
Rr(8(x),8() = Re(ba™'x,ba™"y)
= Fp((ba™'x)"(ba™'x))
= F4(x7'y) = Rp(x,¥).
R(6(x), 8(y)) hence equals R(x,y). Consequently, 6 is an automorphism on G.
As well 6(a) = b, therefore G is transitive. m
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Theorem 3.11: Every vertex-transitive graph with constant neutrosophic edge set values is
regular.

Proof. Assume that any vertex-transitive neutrosophic graph G = (V,R) exists. If you take, then f
is automorphism function on G with f(u) = v.

Recall that

ind(u) = Xxev R(x, u) = Lxev(Rr (x, w), (R (x, w), (Rp (v, u)
= D Re(F 0, £, R((F GO, £O0), Re(F (0, £ ()

XEV
= ind (17), where f(x) =Yy= ZxEV(RT (y' U) ) RI (y' 17), RF (Yf 'U))
OUtd(U) = ZXEV R(x’ u) = ZxEV(RT (u, X), RI (u, X), RF (ur x))
Re((fF ), FO))= Zrev Rr(F (W), £ (D), R ((f (W), f (%))
= outd (17), where f(X) =Yy.= ZxEV(RT (U' y) ) RI (U' y)' RF (U, Y))
Hence, G is regular. m
Corollary 3.12: Every Cayley neutrosophic graph with constant neutrosophic edge set
values is regular.
Proof: Theorems 3.8 and 3.9 directly contribute to the proof. m

Theorem 3.13: Consider a (NG) G = (V,R), and R is a neutrosophic relation on G. Then R is a
reflexive, and R(1, 1) = (1, 0, 0), if and only if T4(1) =1, I,(1) =0, and F4(1) = 0.

Proof. Assume R to reflexive with R(x, x) = (1, 0,0), V x € V, Then

R(xx) = (Ta(x " x), Ly(x 7 x), Fa(x71x)
= (T4(1),1,(1),F,(1))=R(L,1) forall x € V.
Since R(1,1) = (1,0,0) then T4(1)=1,1, (1) =0and F,(x) = 0.
Conversely suppose that T,(1)=1,1, (1) =0,and F4,(1) =0
Then (1,0,0) = (T4(1), I,(1), F4(1)) = R(1,1)
Also,

(TA(l‘J-IA{liFA(l)) = (TA(x_ix]-!A(II_II]:FA{X_ix]) = R(x.x) then R is reflexive. m

Theorem 3.14: If G = (V, R) is NG and R is a neutrosophic relation on G, then R is a symmetric
relation if and only if A(x™1) = A(x),Vx €V

Proof. Assume that R is symmetric. ThenV y,x € V,R(y,x) = R(x,y)
Now take y = x?2 then

A(x)= A(x"1x?) = R(x,x*) = R(x,y)

since R is symmetric then R(x, x2) = R(x, y) = R(y, x) = R(x?, x)
= (Ta((x®) 712, L ((x®) %), Fa ((x*) ™))

= (Ta(x72x), L (x2x), Fa (x %))

=(A(x™)

Conversely, suppose that A(x)= (A(x~1),ve V.

Then R(x,y) =A(x"1y),VX,yeV,

R(x,y) = A(x~'y)

=A(x"1x%) = A(x)= A(x71)

Page | 84

ISSN: 2312-8135 | Print ISSN: 1992-0652

info@journalofbabylon.com | jub@itnet.uobabylon.edu.iq | www.journalofbabylon.com


mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

A“icle JOURNAL OF UNIVERSITY OF BABYLON VoL32; No.1. | 2024

For Pure and Applied Sciences (JUBPAS)

ey D T T ey S Ty S D T e ey

!

Y >

1

(o € yper

vé‘\v

TSy S Y T

=(A(x7%x) = A(y™'x) = R(y,x)

Hence R is symmetric. m

Theorem 3.15: Neutrosophic Relation R be antisymmetric if and only if
{x:A(x) = A(x™ D} = {(1,1,1)}

Proof: let x € V and take R as anti-symmetric.

Then (Tg(x), Iz (), Fr(x)) = (T4 (x™1), [ (x™1), F4(x~1)), that implies R(1, X) = R(X, 1)
As aresult, x = 1 [since R is antisymmetric].

Conversely, imagine ({x: R(x) = A(x"1H)}={(, 0,0)}.

So, VX, YEV,R(X,y) =R(y, X) © A(x~1y)= A(y~1x).

This implies that A(y "1x)= A(x"1y)™1). So that x 1y = 1.

In other words, x=y. R is hence antisymmetric m

Theorem 3.16: Let R be SVN- relation. Then R is transitive iff (T, 14, F4) is neutrosophic sub-
semigroup of (G, *).
Proof. Let X, y € V and R be transitive ,then R> R?.
Now V x € V ,we have R(1,x) = A(x).This implies that
V{R(1,x) AR(z,xy)|z € V} = R?(1,xy) < R(1,xy)

That isV{(Tr(2) A (Tr(z"xy)|z €V} < (Tr(xy) A{Ig(2) V Ix(z7xy)|z € V} =
Ix(xy) and A{Fr(z) V Fr(z7lxy)|z € V} = Fr(xy).
Then T,(xy) = (Ta(x) A (T4(3)),
In(xy) = (14(0) ALy (y)) , and Fu(xy) = (Fy(x) A Fp(y)
Hence (Ty, 14, F4) is neutrosophic sub-semigroup of (S, *).
Conversely, suppose that A = (T, 14, F4) is neutrosophic sub-semigroup of (G, *).
That is, V X, y € V, comparative of the edge and vertices neutrosophic values conditions meet
next forany x,y eV,

R*(x,y) = (R7(x,¥), R} (x,¥), R (x,¥))
R7(x,y) =V {Rr(x,2) ARr(z,y)|z € V}

=V T,(x'2) AT4(z7 4, )|z € V} < Ty(x™,y) = Rr(x,y)
RE(x,y) =A{R;(x,2) VR,(z,y)|z € V}

=AM (') VI (T Iz eV < L (x7hy) = Ri(x,y)
Ri(x,y) =N {Rp(x,2) V Rp(2,y)|z € V}

=NMF,(x T 2) V(27 )|z € VY < Fa(x™,y) = Re(x, )

Hence R#(x,y) < Rr(x,y), R (x,y) < R;(x,y),and RE(x,y) < Rp(x,y)
Therefore, R be transitive. m
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Theorem 3.17: If R be a neutrosophic relation then R is a partial order (PO) if and only
if A = (T, I, Fg) is neutrosophic sub-semigroup of (V, *) satisfy the following
() T,(1) =1,1,(1) = 0,F,(1) =0,
iy e (TaG), L), Fa(0) = (Talx™), (™), Fa(x ™)} = {(1,0,0}
roof: since R is (PO) then it is
1) R is transitive it means that (i) is satisfied by theorem 3.13
2) R is anti-symmetric which leads (ii) is met by theorem 3.15
Conversely let (i) , (ii) satisfied and A is neutrosophic sub-semigroup then from (i) and
(if) it can be proven that R is reflexive and anti-symmetric by theorems(3.13 and 3.15)
respectively.
Additionally , since A is sub-semigroup then R is transitive by theorem 3.16 m

Theorem 3.18:
Neutrosophic relation (R) is linear order(LO) if and only if (T, I, Fz) is a neutrosophic sub-
semigroup of (V, *), In addition to conditions of theorem 3.17, the following conditions are
satisfying:
(iii) R? <R, thatis,

{x»y |TR(X»}’) = TR°R(x,}’):IR(x,)’) < IR°R(x'y)'and ,FR(x,)’) < FR°R| X,y € V}'
(iV) {x |Ta(x) V Ta(x™1) > 0,14(x) A Li(x™ 1) > 0,and Fy(x) A F4(x™1) > 0}.

Proof. Suppose that R to be (LO). Therefore, the points (i), (ii) and (iii) are satisfied by Theorem
3.17. vxeV,(RVR™)(1,x) >0, it follows from this R(1,x) V R(x,1) >0
Therefore {x |[T,(x) VT4 (x™1) > 0,I,(x) AL;(x™1) > 0,and F,;(x) AF,(x~1) > 0}

Conversely, assume that (i), (ii), and (iii) are held. According to the theorem 3.15, R is (PO).
Now, Vx,y € V,wewill have (x71y),(y 1x) € V.

Then by condition (iv),
{x |T4(xx) VTa(x™1) > 0,1,(x) AL(x™ 1) > 0,and Fi(x) AFy(x™1) > 0}.

Thatis R(x,1) V R(1,x) > 0.So,(R V R™Y)(x,y) > 0 ,and therefore, R is linear
order. m

Theorem 3.19: Suppose R be a neutrosophic relation. Thus, the relation R is (EQ) if and only if
(T4, 14, F,) be a neutrosophic sub-semigroup of (G, *) satisfy the following:

(i) A(1) = (1,0,0).

(i) A(x 1) = A(x) forallx € V.
Proof: Theorems 3.17 and 3.18 directly lead to the proof. m
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4.CAYLEY SINGLE VALUED NEUTROSOPHIC GRAPHS (CSVNG)

INDUCED BY CAYLEY (SVN) GRAPHS

Definition 4.1: Assume that L is a semigroup and that A(x) < L. Then, all of the neutrosophic
sub-semigroups of L that contain A are met in the sub-semigroup created by A, it has been
shown by (A4).

Example 4.2: Suppose that L = Z,and A = (Ty, Iy, F4) as in example 3.5.

Then (A) is provided by (A(0)) =(1,0,0), and (A(y)) = (0.5,0.5,0.5), wheny =1, 2.

Theorem 4.3: Suppose that (L, *) is a semigroup, and A = (Ty, 14, F,4) is neutrosophic subset of
L. So, neutrosophic subset (A4) is exactly stated by
(Ta()) =V {(Ta((x1) A (Ta(Cx2) Ao A (Ta((X0) 2 X = X1, X5, won, X With Ta(x;) > 0
fori =1,2,...,n},
(Ia()) =V {Ua(Ce1) ATa(e2) A ATa((xn) 2 X = X3, X2, 00, Xy With [y (x;) > 0
fori = 1,2,...,n}forany x € L.
And (F(x)) =A{F (x1) V F4(x3) V...V F4(x) : x = Xq,X5, ..., X With F4(x;) > 0,
fori = 1,2,...,n}Vx € L.

Proof. Let A" = (T, , 14, F,), be neutrosophic subset of L defined by

Ty(x) =V {Ta(x1) A Ta(x) Ao A Ta(x) 2 (Ta(xn)) 2 X = Xq, X2, .o, Xy With Ty (x;) > 0

fori = 1,2,...,n},

Li(x) =A{(x) V Ii(x) V..V Li(x) 0 x = X1, X3, 0, X With [,(x;) > 0

fori = 1,2,...,n},

Fy(x) =A{F4(x1) V Fp(x3) V...V Fy(x) ¢ X = Xq1,X3, ..., Xy With F4(x;) > 0

fori = 1,2,...,n},forany x € L.

Letx,y € LIf Ty(x) = 00rTy(y) = 0,thenT4(x) AT,(y) = 0

and I,(x) = 0or I4(y) = 0,then I,(x) A I,(y) = 0.

Therefore, T, (xy) = T4(x) AT4(y), and I (xy) = I,(x) A L4 (y).

Again ,if T4(x) #= 0,1,(x) # 0,and F4(x) # 0

then by definition of T (x), I,(x), and F,(x) we have T;(xy) = T,(x) A T4(y) and
Iy(xy) = 1(x) v 1,(y) and Fy(xy) < Fp(x) v F,(p).

Hence (T, 14, F, ) is neutrosophic sub-semigroup of L containing (T, I4, ).

Now, let L’ represents any neutrosophic sub-semigroup of L' that contains (T, I4, Fs).

Then,V x € Lwithx = x4, x5, ..., x, with T4(x;) > 0,14,(x;) > 0,and F,(x;) > 0,

fori =1,2,...,n,wehave T/ (x;) = Ty(xy) AN Tp(xp) ANoo.A Tp(xy) =
Ty(6) A Ta(x2) Avoh Ta() () < Tp(x) A Tp(xs) AcA Lp(xy) 2
La(x1) A Ly(x) Ao A Ig(xy) and Frr(x) < Fpr(xq) A Fp(xy) AoA Fp(x,) =
Fa(x1) A Fa(x2) AN Eg(n) - Tpr(x) = Ta(xq) A Ta(xz) AN Ta(xn)

X = Xq,Xg, e, Xp With Ty(x;) >0 for i =1, 2, . . ., n}, I(x) < ILi(xq) A Li(xp) AL
Li(xp) ©x = X4, Xp, e, XxpWithI,(x;) >0 fori=1,2 ...,n} and Fr(x;) < Fu(x) A
Fa(xy) Ao A Fa(xy) ©x = Xq,X2, o, Xp With Fy(x;) > 0, fori=1,2,...,n}.

Vx €L, Ty(x) Ty (x), [(x) =1,(x),and F(x) < F;(x), forall x € L.
Thus A" = (Ty, 14, F,) is the meet of all neutrosophic sub-semigroup containing (T4, I4, F). ®
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S.PLANARITY IN CAYLEY (SVN) GRAPHS

Definition 5.1: A graph having the formula G=(V,E) with set of vertices V and edges set E is
called planer graph if for any two edges do not overlap, except potentially at their end-vertice.

Definition 5.2: Let G be a group with generator X then both G and its generating set X are said
to be planar if the Cayley graph C(G,X) is planar.

Theorem 5.3: For any subgroup of planar group is planar.

Proof :let G be planar group then there exists a set XcG in which C(G,X)be Cayley planar
graph.

Take H as a subgroup of G. Since any subgraph of planar graph is planar then any subgraph of
C(G,X) induced by vertices points of H is planar, then H is planar.m

In reality, suppose that H c G and that is a Cayley graph for group G determined by
1) select a spanning tree T for the quotient H\ T' of the H-action on T,

2) Constrict each pre-image of T in I to a point.

Definition 5.4: With x denoting X's general components. A SVN dual-set A taken from X
described by the three functions counts( truth T,, indeterminacy I, and falsityF,)-memberships,
from X into the real interval [0, 1]. Next, we define a SVN dual-set A as

A= {{x, (T4 (), Ti (), 13 (20, 1§ (20), F3 (o), F£ ()

where the truth-membership sequence T4 (x), TZ(x), the indeterminacy-membership sequence
I} (x),12(x) , and the falsity-membership sequence Fj(x), FZ(x) either a descending or ascent
order, and sum of T (x), I; (x), Fi(x) € [0, 1], fulfills the requirement

0 < supTi(x) + supli(x) + supFi(x) <3
for x € X. It is convenient to represent a (SVN) dual-set A as follows:
A={{x, Ta(x0) 1, a(x)i, Fa(0) )X € X, 1 =1, 2}.

Note: Using the idea of (SVN) dual-sets, we first propose the SVN dual-graph notion.

Definition 5.5: Let A = (T4, 14, F,) be SVNS on X+ @ and
B = {(xy: Te(xy)i, Is(xy) 1, Fp(xy)i|x,y € XX X, i = 1,2}

be a (SVN) dual-set of X x X such that neutrosophic comparative equations are satisfied, then G
= (A, B) is said to be SVN dual-graph.

Keep in mind that there can be several edges connecting the vertices x and y. the edge xy's three
types of membership values: truth, indeterminacy, and falsehood reflect, respectively. B is
referred to as a SVN dual-edge set in the SVN dual-graph G.

Example 5.6: Example in figure 2 is Cayley SVN-Dual graph.

Theorem 5.7: Every neutrosophic Cayley graph is planar if and only if its underline graph is
planar
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Definition 5.8: Let B(xy); i=1,2|xy € X x X be a (SVN) dual-edge set in SVN dual-graph G.
Both degree type of a vertex x € V is defined by

in-deg(x) = (X1 T (29) 1, Tt I (69)1, 2%y Fp();) -OF by

out-deg(x) = (7%, Tg ()i Xy I G)is Xy F (9):), for all y € X

Example 5.9: In example 2

In-deg(1)= In-deg(3)= In-deg(5)= In-deg(7)=(0.6,0.6,1.4).also
Out-deg(1)= Out -deg(3)= Out -deg(5)= Out -deg(7)=(0.6,0.6,1.4).
Then the graph is in-regular and out-regular i.e., it is regular.

Definition 5.10: Let B = {(uv, Tg(uv);, Ig(uv);, Fg(uv);),i=1,2 | uv € V x V} be (SVN) dual-
edge set in SVN dual-graph G. A dual-edge xy of G is strong if the equalities hold
Min{T,(x), T4(¥)} = Te(x,¥)
Min{l,(x), L,(y)} = Ig(x,y)
Max{T,(x), T,(y)} = Tg(x,y), foralli=1, 2.

Definition 5.11: Let B = {(xy, Tg(xy);, Ig(xy);i, Fg(xy);), | Xy €V x Vi =1, 2} be a SVN dual-
edge set in SVN dual-graph G. SVN dual-graph G is complete if only the equalities in the
neutrosophic comparative equations hold, Vi=1,2, andV x,y € V.

(02,0.1,0.7

(0.2,0.1,0.7
0

(0.2,0.1,0.7
(0.2,0.1,0.7

2(0.2,0.1,0.7

,,,,,,

Figure 3 :Cayley graph C(Z4,{1,2})

Remark 5.12: A SVN-graph may be in-complete or out-complete
Definition 5.13: The strength of the SVN edge ab determined by the value
Sab = ((ST)alE1 ()Sl)alw (SF)ab) (ab) (Fa(@.F (b))

_ . Tp(ab); . Ig(ab); Max{F4(a),Fa(b

= M Grtra@ra? ™ mta@ae? "X rp@py, )
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Definition 5.14: Make G an SVN dual graph. An edge ab is referred to a SVN strong edge if
(ST)ap = 0.5, (S)gp=> 0.5, (SF)4p> 0.5, unlike that, it is referred to as a weak-edge.

Definition 5.15: Consider the SVN dual-graph G = (A, B) with two edges (ab, Tg(ab);,
Ig(ab);, Fg(ab);) and (cd, Tg(cd);, Ig(cd);, Fg(cd);) in B, which met at a point P. The
intersection value at P is given by S, = ((ST)p, (SDp, (SF)P):(W ,
(SDab+(SD)cd (SF)ab+(SF)cd)

)

2 2
A SVN dual-graph's planarity decreases as the number of intersection points rises.
Sp is thus inversely proportional to the planarity for SVN dual-graph. Now, the idea of an SVN
planar graph is introduced.
Definition 5.16: G is known SVN planar graph if P, P,, P5, ... P, are the points where the edges
of a particular geometric representation intersect and G is a SVN dual-graph. f= (fr, fi, fr),

where
1 1 1

t=Ur fi. fr). = (1+(sr)p1+<sr)p2+---+(sr)pi " 14(SDp1+(SDpa++(SDp;  1+(SF)p1+(SF)pz++-+(SF)p;

Clearly, f = (fr, fi, fr) isbounded and 0 < f <1,0< f; <1,0< fp <1.

The SVN- planarity value of a particular geometric representation of an SVN- planar network is
(1, 1, 1) if there is no point of intersection.

In this situation, the crisp planar graph is the underlying crisp graph of the SVNG. The degree of
planarity varies, and as a result, there are more and fewer places where the edges cross. In the
event that fr rises while f; and f;fall. We come to the conclusion that every SVNG is a planar
and has a specific value for the single-valued neutrosophic planarity.

Example 5.17: in figure 3

value Sz1 = ((ST)31, (SD31, (SF)31)
B Tg(31) Tp(13)

= (MNP Ta®) * MA@ T ;min(
Ip(31) 1g(13) ) (Max{FA(l),FA(3)} Max{FA(l),FA(3)}))
Min{T4(3),T4(1)} " Min{T4(3),T4a(1)}" 7’ Fp(31) ’ Fp(13)

—((%2 501y (03 02 0.5,,05\y 01 01 05,_ 115
_((0.3 A0.3) ( 0.4 A0.4))'(0.8V0.7)) (0.3’0.2’0.7) (3’2’7)

value Sy, = ((ST) o2, (S1)o2: (SF)o2)

_ (o TB(02) - 15(02) Max(Fa0)Fa(@)\\_(02 02 02\ _
B (mm(Min{TA(O),TA(Z)}) min( Min{IA(O),IA(Z)}) ’ ( Fg(02) ))_(0.2' 02’ 0.2) =111

(8T)31+(ST) (SD31+(SD) (SF)3,+(SF)
Sp1 = ((ST)p1, (SDp1, (SF)p1)=( 312 =y 312 2, 312 02)

_(§+_1%+_1;+_1)_(Z§§)
TN 2 27 7T 370y
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CONCLUSION

In this article, the concept of Neutrosophic Cayley graphs (NCG), which combines graph
theory with algebraic structure, is presented. Then its features were studied in various contexts
where the Cayley algebraic structure exists. A weighted directed graph of neutrosophic groups
was designed that is expressed by three components (truth, indefiniteness, and falsity)—
memberships as they were used and built into a relation. This is an improvement over FSs and
IFSs. Numerous intriguing properties of the neutrosophic graph (NG), including transitivity and
regularity, are visible. Additionally, Cayley's neutrosphere diagrams' planarity was established,
and observations and ideas were developed in response.
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