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ABSTRACT

Loop unrolling is one of the key optimization strategies that compilers employ to enhance the efficiency
of loop-based programs. The loop unrolling approach aims to minimize the number of iterations carried
out by the loop, hence reducing the sub-instruction overhead. We divide the current state-of-the-art loop-
opening strategies into two groups in this survey paper: machine learning-based strategies and
conventional strategies.

Several conventional techniques are used in unrolling the loop, such as profile-based, heuristic-based, and
static analysis-based techniques. As a result, the amount of instructions, the loop nesting structure, and the
number of loops will all be taken into consideration by these approaches when determining whether to
unroll the loop. Because these techniques are frequently constrained by their presumptions, they might not
always yield the optimal outcomes. In contrast, loop unrolling can anticipate the ideal loop unrolling
factor by utilizing machine learning-based techniques such artificial neural networks, k-nearest neighbors,
decision trees, support vector machines, and random forests. When these techniques were compared to
other conventional techniques, the outcomes were superior.

In this paper, we supply a comprehensive review of the existing loop unrolling techniques, which include
their strengths and limitations. Also, we compare the different machine learning-based approaches and
debate the potential benefits of using machine learning in loop unrolling optimization. Our goal is to
provide a comprehensive overview of the field and to provide guidance for future research in this area.
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INTRODUCTION

Loop unrolling is an optimization technique that decreases the overhead of control flow and
improves the performance of loops in computer programs. Iterating by step u rather than step 1,
it repeats the body of a loop, known as the unrolling factor u, multiple times. In order to apply
Instruction Level Parallelism ILP to architectures such as Very Long Instruction Word VLIM
and Superscalars, an essential technique for generating efficient instructions is required. Loop
unrolling can increase speed by lowering loop overhead, boosting instruction level parallelism,
and enhancing register, data cache, or Task Level Parallelism TLB locality. The reason for the
reduction in loop overload is that an extra iteration is carried out before to the test and branching
occurs at the conclusion of the loop. The first and second assignments can be completed in
simultaneously, increasing instruction parallelism [1,2].

UNROLLING STRATEGY IN A GENERAL CONTEXT

The typical work of unrolling a loop is to find the key induction variable in the state in
which the loop will exit. Therefore, the variation in the loop that is increment or decrement by a
fixed amount on each iteration of the loop is the basic induction variable. Therefore, the constant
change of the variation is made reference to as a step in the loop, and this is in the case of using a
basic inductive variable in the case of exiting the loop. When the loop exit condition checks the
principal induction variable against certain restrictions to see if the loop may continue to run, it is
possible to modify the preparation phase and eliminate some loop repeats. In order for the basic
induction variable to be usable in opening the loop, it must meet one requirement: the value
remained constant through the loop's execution. This means that the value against which it is
tested when the loop exits must be constant. This is to make sure that iterations are not added or
removed during unrolling. In this scenario, the unrolling algorithm will be permitted to calculate
the number of iterations that the loop will execute at runtime.

Fig. [1.1 a], demonstrates how easily the for loop may satisfy these needs. When the loop
is about to end, the major inductive variable —i- is employed. After every loop iteration, the loop
step is to increase this step by 1. Where i exit condition is tested against n iterations, and the
value of n is fixed in the loop. The next step: Once we find the basic induction variable, we begin
the process of repeating the loop code within the loop body. After the replication process, the
reviewer of the basis induction variable in the loop is updated as needed.
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for (i = 0; i < n; i +=4) {

arr(i] = i;
for (i = 0; i < n; i++) { arr[i+1] = i+1;
arr[i] = i; arr[i+2] = i+2;
} arr[i+3] = i+3;
}
(a) A C style for loop. (b) Same loop after unrolling with an unroll factor of 4.

Figure 1.1: An example of unrolling a C style for loop.

Fig. [1.1 b] shows an example of this case. The process of copying the loop text is 3
times because the numerator factor in this example is 4. Then every one reference to i in the
unwrapped loop is shifted by 1. Finally, we notice that i the variable is converted to 4 in order to
remove the duplicates covered by the body of the original loop [3].

TRADITIONAL APPROACHES TO LOOP UNROLLING

A well-known optimization technique is loop opening which has been widely used in
compilers to upgrade the performance of loops in computer programs. Traditionally, loop
unrolling has been performed using heuristics and cost models.

Heuristics-based approaches rely on rules of thumb to determine the unroll factor. One
popular heuristic is to unroll loops by a power of two, four, or eight, for instance. Heuristics can
produce less-than-ideal solutions and may not be appropriate for loops with intricate control
flows, despite being simple to apply and requiring little computing overhead [4].

On the other hand, cost models estimate the loop's performance using mathematical
models. Usually, these models take into account the costs associated with branching, accessing
memory, and running the loop [5,6]. Unfortunately, a number of issues can compromise the
accuracy of cost models, such as the challenge of effectively predicting the performance of loops
with complicated control flow and the difficulty of estimating the behavior of contemporary
computer systems [7].

Another traditional approach is to use a compiler’s built-in unroll factor or to manually
specify the unroll factor through compiler flags or pragmas [8]. This approach is simple and
straightforward, but it may not produce optimal results, particularly for loops with complex
control flow [9].

Compilation and execution time methods were used to study more aggressive loop-
unrolling techniques. Some compilers used the naive unrolling procedure. In practice, work has
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been done to improve the assembly-level code, although the compile methods and execution time
are similar regarding concepts [10].

Lesson on associating memory references with a static or dynamic clarification with the
performance benefits of unrolling the loop. Since loop opening is the main focus of this work,
the advantages of loop opening with dynamic clarification of memory references were examined,
along with the dynamic interactions between loop optimizations and memory references [11].

In this study, new algorithms were created to obtain code that opens nested loops in the
form of a naive loop. Thus, methods were obtained that can effectively enumerate loop opening
vectors, as well as code for opening nested loops [12]. Using supervised machine learning
methods, the suitability of opening different loops was discovered [13]. We also worked on
iterative methods to repeat the openings to obtain the best code after compilation, where the loop
is opened once for each loop in the input file. Since the phase ordering at the assembly level is
more flexible, these studies also focused on the problem of phase ordering at the assembly level
[14].

MACHINE LEARNING-BASED APPROACHES
Due to the increasing interest in recent years in using machine learning algorithms to

improve the loop unrolling process. Where Machine Learning algorithms have the ability to
model the relationship between the loop characteristics and the unroll factor and predict the
optimal unroll factor for a given loop. Several studies [15]-[20] have used decision trees,
Artificial Neural Networks (ANNSs), Support Vector Machines (SVMs), k-nearest neighbor
(KNN), and random forest algorithms to the analyze the performance of the loop unrolling in
compilers.

e Random Decision Forest

A classifier called a random decision forest uses several decision trees to train and predict
samples [21]. The decision trees differ significantly and the over-fitting phenomenon is avoided
since the nodes of each decision tree are selected at random from the feature vectors of training
samples throughout the training phase. During the prediction step, each decision tree is able to
submit a forecast result; the random forest will then vote on all of these results together to
provide a final prediction [21].

A loop unrolling technique based on an improved random choice forest was provided in this
work [20]. First, by including a weight value, has been enhanced the conventional random
choice forest. Second, BSC is suggested as a method for handling unbalanced data sets. SMOTE
is the foundation of this technique. Where the loop unrolling factor prediction model's training
set is made up of features chosen from about a thousand loops after they were compared to
multiple benchmarks. Moreover, the model predicts the unrolling factor with an accuracy of
81%. While Open64's built-in loop unrolling model can only boost performance by 5%, the
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weight-balanced decision forest strategy of predicting loop unrolling factors described in their
research can enhance program performance by 12% on average [20].

It has been used in machine learning classification based on Random Forest that can
precisely forecast unrolling factors for loops in high-level synthesis (HLS) designs. Breiman
provides a framework that is automatically included by the low-level virtual machine (LLVM)
compiler. It first obtains pertinent loop information by looking at the Intermediate
Representation of the source code before computing directive values for loop unrolling factors. A
major benefit of HLS implementation for heterogeneous systems mixing accelerators and
processors is the ability to simply re-target software components to hardware, frequently without
the need for source code modifications. A reduced average error and a higher prediction score
were attained by contrasting the suggested approach with the most sophisticated machine
learning methods. Accurately anticipating loop unrolling variables can lead to good performance,
as demonstrated by experimental data [22].

e Aggressive Loop Unrolling

Loop unrolling is a well-known code enhancement, and it is said to be one of the issues that
needs to be resolved in order to carry out loop unrolling more effectively. The initial loop text is
repeated multiple times and the loop termination code is set when the loop is unrolled. As a
result, the primary result of unrolling the loop is to minimize the overall number of code that the
CPU will run during its execution. Consequently, we examine the ring's properties in this work
since they are crucial for unraveling the loop.

The significance of handling loops when the loop boundaries are unknown at the time of
compilation is one of the factors examined. A further aspect examined was the intricacy involved
in terminating control of the potential loops. As a result, the aggressive compiler must open these
loops since handling them doesn't needlessly increase the complexity of the loop
decommissioning techniques or shorten the compile time. According to our measurements,
aggressive loop opening can improve performance over a basic and naive method by 10 to 20
percent for some benchmark sets, and for some programs, performance gains of up to 40 to 50
percent are possible [23].

e Artificial Neural Networks (ANNSs)

Because they can accurately predict and simulate complex non-linear connections, ANNS are
frequently employed in loop unrolling optimization. They can recognize patterns and correlations
between inputs and outputs because they are made up of interconnected nodes arranged in layers
[24]. When using machine learning techniques, selecting the optimal input features is an
important step. Since our contribution focuses on the local optimization of loop unrolling, we are
using a technique that automatically extracts features for each loop nest (TIRAMISU
calculation). To forecast the ideal unrolling factor for TIRAMISUs algorithms, deep neural
network model is presented in this paper that addresses loop unrolling optimization. A
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polyhedral framework called TIRAMISU [25] is intended to produce high-performance code for
a variety of platforms, such as distributed machines, GPUs, and multicores. TIRAMISU
specifically manages the complications that arise when addressing these systems by introducing
a scheduling language with unique instructions [26].

e Support vector machines (SVMs)

A type of supervised machine learning algorithms that are often used in loop unrolling
optimization. This is due to the high accuracy and robustness of the SVM model, which makes it
well-suited to address complex optimization problems.

Antoine, one of the machine learning techniques, Support Vector Machine SVM, was used to
predict the automatic routing profitability of the Intel compiler basic block. The SVM is a
standard set made of 151 simple loops, which are spread by factors ranging from 1 to 20. The
work made three contributions: the first is correctly predicting the profitability of routing, and it
achieved correct prediction accuracy for 70% of programs, even before opening the loops.
Second, a collection of firmware properties are proposed that characterize the standards that were
developed. The choice of software feature set is crucial and is determined by the benchmark and
the problem we are attempting to solve. Third, with a 2.2-times speedup, the results shown that
applying machine learning approaches may greatly improve the Intel compiler's code quality
[27].

In addition, there are many ways to solve the loop unrolling problem in literature. In 2013,
the idea of loop unrolling and superscalar architecture was discussed, which is a way to exploit
ILP (Instruction-level parallelism) for devices with multiple functional modules. parallelism,
performance improvements were achieved. In addition to the use of measurement techniques
associated with simulation technology [28].

In the year 2017, a different technique was used, because most of the previous loop unrolling
techniques worked on loops with fixed execution counts. The code prediction method, which
aims to reduce the worst-case time (WCET), was used, as well as the use of If-conversion to
explore code predictions, as If-conversion is a standard compiler optimizer that converts control
dependencies into data dependencies, which leads to the removing branches. In addition, this
technique has been combined with other standard deployment methods based on data and fixed-
execution counts, so it can be decided at the level of each ring which method should be used to
activate the ring. The results demonstrated that this combination resulted in a strong reduction in
WCET when compared to the original code [29].

In 2018, work was done to improve the method of unrolling non-counted loops, in which the
numerical of repetitions cannot be determined at runtime or compile time. Additionally, the loop
exit condition is frequently repeated when non-counted loops are opened. The unrolling of non-
counted loops was opened using a novel technique that relies on code repetition based on
simulation. where, based on the suggested fast-path loop design, utilize a technique for partially
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uncomputed fast-track loop opening. The results demonstrated that opening the loop based on the
simulation with a 25% increase in running time improved the performance unroll of uncounted
loops [30]. In 2018 the loop Learner approach was used to forecast which loop will be write,
which in turn leads to efficient compiled code. The solution to the issue of compiler instability is
loop Learner, it is a learning-based methodology that forecasts semantics-preserving loop
modifications while enhancing program performance. This is accomplished by training a neural
network to identify source-level changes for loops that are semantically coherent and aid the
compiler in producing more effective code [31].

In 2023, the prediction operator was used to improve the non-uniform optimization
capabilities of the compiler's loop. It uses a number of different parameters to estimate which
loop-canceling agent would be best. The program totals were computed using the following four
loop pass factors: 2, 4, 6, and 8. Following a reorganization of the programs based on their
potential benefits from the loop factor, we determine the ideal loop opening factor that can
shorten the execution time of the majority of similar programs. The suggested approach showed
positive outcomes in quickening the program's execution [32].

CONCLUSION
In conclusion, the use of machine learning in loop unrolling optimization has shown

promising results in recent years. Machine learning algorithms can model the relationship
between the loop characteristics and the unroll factor, and predict the optimal unroll factor for a
given loop. While more work is needed to validate the robustness and generalizability of
machine learning-based approaches, they have the potential to upgrade the accuracy and
performance of loop unrolling in compilers. This survey paper provides a comprehensive
overview of the recent developments in the field of using machine learning in loop unroll
optimization and highlights the potential of machine learning-based approaches for loop
unrolling optimization.
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