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ABSTRACT

In many countries around the world, agriculture plays a crucial role due to rapid population
growth and the resulting increasing demand for food. Therefore, there is an urgent need to improve crop
guality, which has a clear impact on increasing the economic and financial growth of farmers. Important
factors contributing to the decline in crop quality are diseases caused by bacteria, viruses, fungi and other
agricultural pests. The impact of these diseases can be mitigated using plant disease detection techniques
based on artificial intelligence techniques. Transfer learning models in such cases are particularly useful
for early identification and detection of these diseases, as they are specifically data-centric and prioritize
specific outcomes related to the task at hand. This study provides a comprehensive overview of the
different stages of the general plant disease detection system and a comparative analysis of the temporal
model used to classify plant diseases. This analysis aims to enhance agricultural economic growth and
provide tangible benefits to farmers and agricultural businesses, which have a direct impact on the
financial and economic income of countries.

Key words: Classification, Convolutional Neural Networks; Image Processing, Plant Leaves Disease and
Transfer Learning.
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INTRODUCTION

The agriculture sector has become a key component of economic development, prompting
farmers to select appropriate crops based on climatic conditions, soil quality, and economic
value[1]. In the face of increasing challenges such as climate change, population growth, and
political instability, the agriculture industry has begun to look for new ways to increase food
production. This has prompted researchers to explore advanced and precise technologies aimed
at achieving higher levels of productivity [1].

Farmers can benefit from precision agriculture and information technology to collect data
and make decisions aimed at enhancing agricultural production. Precision agriculture is a
modern technology that provides advanced means to increase farm productivity. By relying on
these technologies, economic growth can be achieved in the agricultural sector [2]. It includes
multiple applications such as pest detection, weed management, crop estimation, and diagnosis
of plant diseases. Farmers use pesticides to control pests, reduce diseases, and raise crop yields

[3].

Plant diseases are a major challenge, as they reduce production and cause economic losses
to farmers. Therefore, identifying plant diseases is vital to the success of the farming system.
Farmers rely on visual observation to detect disease symptoms, which requires continuous
monitoring . As farms grow in size, traditional methods of plant disease detection become costly
and less accurate[4].

Farmers may have to send samples to experts, which raises costs and is time-consuming.
So, techniques such as transfer learning are needed to detect plant diseases more quickly and
accurately. Transfer learning allows models to be trained efficiently using limited data, reducing
the need for large amounts of samples [5]. The following sections of this article will cover the
basic steps in developing an effective and more accurate disease detection system, as well as the
models used to identify and classify these diseases.

This review is organized as follows: In Section (2), the basic stages of a plant disease
classification system will be reviewed, where it will discuss each stage in detail and explain its
role in the classification process. Section (3), will provide a comprehensive overview of transfer
learning models, focusing on how they improve the accuracy of disease classification and reduce
the need for large amounts of data. Section (4), will provide a brief introduction to the tools and
techniques used in developing transfer learning models, highlighting their features and ways to
effectively apply them in this field. Section (5) compares studies based on transfer learning
models. Finally, Section (6) summarizes the conclusions from this review.

GENERAL PLANT DISEASE DETECTION SYSTEM

Plant diseases can be diagnosed by examining the parts of the plant (leaf, stem, and root ).
Digital image processing techniques can also be employed to discover disease in stems, leaves,
flowers, and fruits, as well as to analyze the shape and color of affected areas. Image processing
technology consists of five basic phases, as illustrated in the data flow diagram in Figure 1
below.
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Figure. 1 Plant disease detection system [7]

» Image Acquisition: The initial stages of plant disease detection systems involve
capturing images. High-quality images of plants be able to gain by using scanners, digital
cameras, or drones.

» Annoted Dataset: A knowledge-based dataset of the captured images is generated and
classified into various categories.

> Image processing: The captured images are pre-processed to enhance the main features
that will help in the subsequent analysis. The segmentation technique is used to divide the
plant image into several parts, which facilitates the process of extracting the affected area
of leaves, stems, or roots from the background.

> Feature extraction: The features such as shape, color, and texture of diseased parts of
plants are obtained using techniques such as gray-level co-occurrence matrix (GLM),
hybrid vision, artificial intelligence, and other methods.

» Classification: ultimately, any machine-learning Technologies can be employed to
classify different types of plant diseases [7].

TRANSFER LEARNING
In the field of deep learning, transfer learning refers to the reuse of previously trained

networks to perform new tasks. This method is popular because of the ability to train the network
with a limited amount of data while achieving a high level of accuracy[8]. Transfer learning
relies on leveraging the knowledge gained from previous tasks to improve the performance of
new tasks. During this process, the last layer of the previously trained network (FG16,
PresNet50, ConceptNet, GoogleNet, MobileNet, and XNet, etc.) is substituted by a new layer
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that includes a convolutional layer, a fully connected layer, and a Softmax classification layer
specially designed to fit a certain number of classes [9]. The following sections briefly explains
some of the common transfer learning models used in the agricultural field.

» VGG16

The VGG16 model contains of (16) layers known for its robustness and precision in
weights, as well as its exceptional classification ability. This model is ordinarily used in transfer
learning due to its relative ease of use. Instead of depending on a large number of
hyperparameters, it focuses on using convolutional layers with (3x3) filters, with a stride of (1)
and the same type of padding [10]. The MaxPooling layer also uses a (2x2) filter with a stride of
(2). Both types of layers are designed consistently across the model architecture. Ultimately, the
output consists of two fully connected (FC) layers followed by a SoftMax layer. FC layers are
used in extracting features for image classification [11].

> AlexNet

The development of AlexNet has rekindled researchers' interest in convolutional neural
networks (CNNSs). AlexNet is a pretrained CNN comprising eight weight layers: five
convolutional layers and three fully connected layers. Additionally, there are three max-pooling
layers following the 1st, 3rd, and 5th layers, computing approximately sixty million parameters.
The architecture also includes activation layers, and each fully connected layer contains 4,096
neurons. The second fully connected layer is linked to a SoftMax classifier, which provides
output across 1,000 classes [12].

» GoogLeNet

GoogLeNet is a seven-level convolutional network, named after LeNet, and was the
winning network in 2014. This network, consisting of 144 layers, requires an input size of
224x224x3. The input data is augmented and resized to fit this format for training the model.
The transfer learning steps for this network differ from those used in AlexNet and VGG16.
GoogLeNet was designed for computational efficiency, enabling it to run on devices with limited
resources. The trained model classifies the testing data, and performance parameters are then
evaluated [13].

> MobileNet

MobileNet [14] was developed by a research team at Google. This model is designed for
efficient mobile and embedded vision applications. It features depth wise separable convolution
layers, which reduce computation by approximately eight to nine times [14]. Despite having 154
layers, MobileNet is smaller and faster than GoogLeNet due to the use of a width multiplier and
adjustments to resolution, resulting in shorter training times. The model requires an input size of
224x224x3. The input data is expanded and resized to fit this training format. The trained model
is then employed to classify the test data and the performance indicators are evaluated [15].
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» InceptionNet

InceptionNet is a deep CNN architecture developed by researchers of Google in 2014.
This architecture achieved a top(5) accuracy of (93.3)% in the ILSVRC competition.
InceptionNet, which consists of 22 layers, provides a complex and innovative CNN model.
Unlike traditional sequential architectures, it includes a network layer within the network, a
pooling layer, and small and large convolutional layers that operate in parallel. As well, the
dimensionality is reduced by a (1 x 1) convolution operation. The parallel processing and
dimensionality reduction strategy used in this architecture significantly reduces the number of
operations and parameters, resulting in efficient memory and computational savings [16].

> ResNet50

ResNet50 is a CNN architecture within the ResNet family, designed to address the
difficulty of training deep neural networks. Its developed by Microsoft Research Asia, is well-
regarded for its efficiency in image classification. It features 50 layers, balancing depth and
computational cost, while the ResNet family also includes shallower models like ResNet-18 and
ResNet-32 [17].

AN OVERVIEW OF TOOLS FOR TRANSFER LEARNING

The tools discussed in the following sections offer a versatile platform for developing
transfer learning models, which can be applied for disease detection and diagnosis in plant
leaves.

» Colab: Google's Jupyter Notebook service gives you free access to computing resources,
including GPUs, without any prior setup required. Colab is particularly well-suited to
data analysis, machine learning, data science, and education. It combines executable
Python code with text, images,charts, LaTeX ,HTML, and other elements into one
document stored on Google Drive [18]. Colab tool's logo and main interface are shown in
Figure (2) and Figure (3), respectively. It is particularly suitable for data science and
machine learning. It differs from other tools in that it allows the user to connect to the
development environment online and does not require installing additional components.

Page | 273

ISSN: 2312-8135 | Print ISSN: 1992-0652

info@journalofbabylon.com | jub@itnet.uobabylon.edu.iq | www.journalofbabylon.com


mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

JOURNAL OF UNNVERSITY OF BABYLON
Vol.32; No.4.| 2024
ne“lew J:o'r' Du'r’e anJ Appheol Sciences (JUBPHS)

Finger. 2 The Google Colab Logo [18]
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» Matlab: Matlab, developed by MathWorks, is a proprietary programming language and
numerical computing environment that supports multiple paradigms. MATLAB enables
matrix manipulations, function and data plotting, algorithm implementation, user
interface creation, and integration with software developed in other programming
languages [15]. The MATLAB tool's logo and primary interface are shown in Figure (4)
and Figure (5), respectively.
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Finger. 6 : The AWS SageMaker Logo [20]
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g
r COMPARATIVE ANALYSIS ‘g’
Ef To provide a comprehensive overview of Transfer Learning models employed for §)
[ diagnosing plant diseases, 23 relevant studies were selected for this review. These studies =
B involved classifying plant leaves using various Transfer Learning models and datasets
" comprising multiple diseases. It is worth noting that all the studies included in the current review %
- adopted the accuracy scale as a performance measure. The analysis aimed to enhance agricultural S
if production and contribute to the country's economic growth based on the predicted outcomes. ;:“
T Such predictions enable farmers and agricultural enterprises to detect disease vulnerabilities %
i early and take corrective action, improving overall performance. The studies reviewed were ©
. published between 2020 and 2024. A summary of the comparison of various Transfer Learning §
(" classifiers and datasets utilized for plant disease detection is presented in Table 1. @
b c
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Kaur et al. Mango Leaf Mango Google . atta_med an
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Based on the comparison presented in Table (1), Figure (8) below illustrates the transfer
learning models according to their frequency of employ in diagnosing plant diseases.
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= Examining the figure above, it is evident that most studies have employed the VGG16 and c
E ResNet50 networks as effective tools for classifying plant leaf diseases. Therefore, this paper 2
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leaves of various plants, divided into diseases and species with 38 categories. The rest of the
datasets have a limited number of images that are specific to the same disease.Therefore, the
review suggests that researchers should use this dataset, as it contains a substantial number of
images for different crops, enhancing the training process.

Other Crop Dataset
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PlantVillage Dataset
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Figure. 10 Dataset used in plant leave diseases in the current study

CONCLUSIONS

A comparative study of six Transfer Learning model architectures for the classification of
plant leaf diseases is conducted in this review. Many authors have favored VGG16 and
ResNet50 classifiers for disease classification over other classifiers. Additionally, it was noted
. that numerous researchers utilize Google Colab as a development environment for constructing
and evaluating transfer learning models, and the PlantVillage dataset as a benchmark dataset.
Through a comprehensive survey of the research in this paper, it concluded that Google Colab is
an effective tool and has been widely used by researchers because it is easy to use and not

Py D T e 6T

!

Yy

5

b complicated. In addition, the PlantVillage dataset because it contains a large set of images, which
-, contributes to increasing model learning and thus improving accuracy. In the future, more
l;' advanced hybrid architectures of transfer learning classifiers could be evaluated for plant leaf
3 disease detection. Ultimately, this review intends to assist farmers in the automatic detection of
> diseases in crops.
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