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ABSTRACT

Boole's rule and Weddle's rule modified quadrature iterated techniques are provided in this study for
locating multiple non-linear equations' roots, the suggested approaches converged cubically, Newton's
approach was used for discovering numerous nonlinear equation roots. Several modifications have been
made to achieve a higher degree of convergence. The modified classical methods developed by many
authors to solve multiple roots of nonlinear equations have been effective in overcoming the deficiency of
the classical Newton Raphson method, however there are new trends of methods proposed by authors,
which have proven to be more efficient than some already existing ones. There are several numerical
examples that support the suggested technique's justification as an evaluation of the Newton-Raphson
method and Simpson's approach, Maple 18 is used to investigate numerical result representations of
modified quadrature iterative Algorithms. The result from numerical findings is that the presented modified
guadrature iterated techniques for finding multiple roots of non-linear equations outperform existing
approaches in terms of performance; these methods were programmed by using software Maple.

Background: Nonlinear equations with multiple roots are challenging to solve accurately using classical
Newton’s method due to its slow convergence in such cases. This limitation motivates the development
of improved iterative methods that offer faster and more reliable convergence. These enhanced
techniques aim to overcome the shortcomings of traditional approaches.

Results: This study developed enhanced iterative methods to improve Newton’s method for solving
equations with multiple roots. The new techniques proved to be accurate, fast, and reliable through
various practical tests. Using Maple 18 for implementation, these methods demonstrated strong
performance compared to existing approaches.

Conclusion This work presented improved iterative methods that make Newton’s technique more
effective for equations with multiple roots. Through several practical tests, the new methods proved to

be accurate, fast, and reliable. Built and tested using Maple 18, they held up well against other well-known
approaches

Key words: Boole's rule, Weddle’s rule, Simpson's rule multiple roots, Iterative Methods, Newton's method.
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INTRODUCTION

Finding equation solutions or determining the roots of problems is a crucial task in
mathematical computations, particularly for a wide range of engineering applications, including
those in numerous scientific domains. Many real-world issues can be solved using equation roots.
Since accuracy of the result is crucial for the majority of practical situations, determining the most
effective numerical method for the task is crucial [13].

One of the most major problems in numerical analysis is the solution of nonlinear equations
[4].

In this work, we consider an iterative method for finding the multiple root ¢ of
multiplicity & .That is, i.e.g'(¢)=0, 1=0,1,..4-1 and g*“(4#)=0 of the nonlinear
equation g(x) = 0. The well-known Newton's method, often known as the classical method, was
developed by

Xk+1:Xk_% k:0111 21 (1)
k

Which converges quadratic ally [9].

Therefore, several of its improvements have been made in order to get a method with a
better degree of convergence[1]-[3],[7],[9]-[11], In [1] suggested a novel approach for easy root
handling of nonlinear equations based on Lisa’s three-eighths rule, which is dubbed the
Simpson-like method. This approach is cubically converging. When a nonlinear equation has
several roots, the power source Simpson-like method is linearly convergent. There are various
numerical approaches for discovering many roots of nonlinear equations. One of the improved
Newton’s methods for various roots. [4] Is as below:

(u-1) X
xkﬂ:xk—%T((xk)) k=0,12,.... Q)
k

Since ¢ a simple root of g™ (x) = 0.

There have been some changes proposed to Newton's multiple-root method then proposed
in past years, which further require knowledge of the multiplicity # .As well as the convergence
order of eq.(2) has been improved, to put it another way, a modification of Newton's Method for
multiple roots of nonlinear equations with cubic convergence was presented in this study,
additionally, it demonstrated that the strategy suggested in this article performs suitable compared
to the presented method in [6], [8]-[14].

The sequence created by eq. (2) is quadratically convergent. A cubically convergent also
exists in [4]
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8g“™ (%)

X —X . X+ =X 7
9 (%) +39“ (%, +%)+3g‘”(xk +2%)+ 9% (Xe,1)

X = % —

. (3)

In this article presents a study on modified quadrature iterated techniques, specifically
Boole's and Weddle's rules, for efficiently locating multiple roots of nonlinear equations. The
central thesis posits that these new methods offer enhanced performance and faster convergence
compared to traditional approaches such as Newton’s method and Simpson's rule.

The rest of paper is organized as follows: The description of the proposed method is
introduced, the analysis of convergence is shown. The result of solving some numerical examples
IS given, in the rest of the paper, gives a summary conclusion on findings from the research.

Boole’s Rule Iterated Method

This section enhances the modified Newton Method described in eq. (2) as follows [4]: the
equation

g P () =9“?(x)+ [9* (y)dy.
... (4)
The segment developed Boole's iterated method for solving nonlinear equations with the
Boole's rule [8]and numerical technique, Let Boole's rules for k=4, such as

fg(x) dx =i—Q[?g(xn+329(x1)+12g<x2)+329(x3)+7g(x4)]- - ()
Where h = 2= %

Taking derivative for solving integration,

J o 00dx=22179'(x,) +329'(x)) +129'(X;)+329'(x;)+ 79'(x,)]. .. (6)

So, it uses the Boole's rule formula to approximate _[ g“ (y) dy, as follows:

Xk

J 9 (yydy = =0 (79“ (%) +329“ (x, +h) +129% (x, +2h) -

+32g“ (x, +3h)+7g™ (x, +4h))
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Where
The multiple root of g(x) is as assumed to be ¢ of multiplicity 2

09 (9= 0% (%) + [0 () ay = 9% 1) + £ (79 ) +

Xk

329" (x, +£27%) +129 (x, + 2549 +329 (x, +3E 1)+ 79 (9)

... (8)
By setting x,,, = ¢ ineq. (8) one can obtain:
_-49"(x)
X =% = X . —X
{7g(ﬂ)(xk)+329(ﬂ)(xk+k+14k)+129( (X +2(=— k+14 ))"'329 (Xk+3( k+14 ))+7g (Xk+1):l
.. (9)
On the other hand
X = X 90g(“ 1 (X )
[79‘”’(x )+32g W (x, + KL k)+12@|(”)(><k+2( Mo k))+329“’(><k+3( Koot~ k))+7g‘”’(><k+1)}
.. (10)

And next by replacing x, ., in the right hand side of (10) by

(u-1) (u-1)
g (%) g (%)

X = X — ) > X — X = )
g (x) g9+’ (X,)

Then

e 90g% (x,)
Xy = Xy —
% 99 (%) + 329" (x, ~ "oy +129 (x, -2y 1329 (1, -3 R0y 1700 (x, —Rex )
. (12)

g“ (%)

Where R(Xx, ) = .
")

Hence, eq. (11) is Boole's iterated method for solving nonlinear equations for multiple roots.
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The Boole's Method Notation

It is obvious if, Let

F.(x) =7g% (x)+32g“ (x —%) +12g“)(x — 2#) +329“(x —3#) +79“ (x = R(X))

.. (12)

Then by setting x=¢ in the above equation we get:

(@) =79 (9)+320% (6~ “ ) 1120 (- 2" ) + 329 (93X E)) + 79 (- R(¥)

.. (13)
Fo(9) =79 () + 320 (4) +129“ (4) + 320 (§) + 79 (9)
- 909 ()
.. (14)
9“7 (9)
here R(@) = =0. ... (15
where R =75 & (15)
So,
100 =799 +329 % e+ S - 0 1 12g0d (1 2 Xy 0o R 8Dy
329 0+ 3D -3 ) + 7997 (- R@) L~ R'9)
.. (16)
Then,
P @) =79 () +3207 ¢+ XDy - By 10 4 2By -2 B0y
329 (9 + 3 - 3(@» £79% (g - R - R(@))
.an
Where R(#)=1. " (18)
Therefore
Fa(#)=45g“" (). ... (19)
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Convergence of Boole’s rule iterated Method

The following theorem takes into consideration how the convergence of the suggested
method behaves when there are multiple roots.

Theorem 1.

For an open interval D, let ¢ be a multiple root of multiplicity p of a suitably differentiable
functiong : D = R — R, If Xo is sufficiently near to ¢ , the method described in (11) has at least

third order convergence.
Proof: -

Assume thatx, , = q(x,) therefore

(u-1) (1) (#-1) ’
90900 | iy 1 909% () , 90 (OF; ()

... (20)
Fa (X) Fa (X) (F, (x))?

q(x) = x—

909U (x) | 90g” () Fn(x) , 90g% (X)Fy (X) +90g“ ™ ()Fy(x) 180g“™ (x)(F; (x)*

700 Fo (X) (Fn (x)? (Fn (X)) (Fn (X))’

(1)
Since the root ¢ is the simple root of g™ (x) and g™ (4) =0 therefore

90g“(¢) , 909“™ () F; (4)

! :1_
_1.909"@) _5_g
90g“(#)
And
4"(x) = 909 (x) , 90g” (x)F'(x) , 909" (X)F;(x) +90g GD()EL(X) 180 “ (X)(F, (X))
F.(X) F. (X) (Fn(x))? (Fn()°
... (23)

Since ¢ is the multiple root of g™ (x) and g“ (4) = othus,

909" (4)  909* (#)Fn(¢) , 909” (#)F;(#) +909“ P (#)F1(4) 180g“ ™ (#)(Fy (4))°

= Fo (#) (Fa(#)’ (Fa(#)’ (Fn(9))°

... (24)
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09000, Fu@ Fi@) | Ful@Fi@)+0_

q"(r) =—

g“ (@) (F(#)? (Fn (¢))2 .
14 459“‘”) (#) L 459 “ (9) _ _1+ ‘”i) (#) _ 141=0
Fn (#) Fn (#) g“P(g)
It's proved.

Weddle’s Rule Iterated Method

This segment developed a Weddle's iterated method for solving nonlinear equations with
the help of Weddle's rule in numerical technique, let [8] Boole’s rule for k=4, such as:

Ja0dx = %[g(xo)wg(xl) +9(%,) +69(X;) + g(%,) +59(Xs) + g(%)]- - (26)

Taking derivative for solving integration

.. (25)

jg'(X)dX=%[g'(xo)+5g'(xl)+9'(X2)+69'(X3)+9'(X4)+5g'(Xs)+g'(Xe)]

Where

So, the waddle's rule formula is used to approximate jg “I(y) dy , as follows:

X

jg‘”)(y)dy~ 0 X2 (g (%) +59 % (x, +h) +6g“ (, +2h)

g“) (x, +3h)+5g9“ (x, +4h)+g“ (x, +6h)

Xk

Assume thatx, ., = q(x,) therefore

2 Ko g (x,) +

@
g“P(#) = 9“ P (x)+ [gP(y)dy = g“ P (x,) + 20

59 (x, + 225+ 99 (x, +2(P 1)) + 69 (x,
¢ o~

+ g% (%, + 4= T0)) 459 (x, +5(F-Tm)) + g (%,)]
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By setting x,,, = ¢ in eq. (28) one can obtain:

o _—2097(x,)
o - Xy — X Xy — Xy Xirr — Xy
g”(xk)*Sg”(Xk*T)Jrg”(xk*ZT)JrGg”(Xk +3T)+
g“ (X +4M)+5g“(xk +5M)+gﬂ(xk+6u)
6 6 6
.. (29)
So,
20 g”(x
g = X — 9" (%)

9% (%) +59" (X, Jf%)w”(xk +2%)+69”(Xk +3%)+

Xy

9“ (X, +4M)+59”(Xk +5M)+g#(xk +6L)
6 6 6
... (30)
Secondly, by substituting x, ., in the right side of Eqg. (30)
(u-1) X (w1 X
xk+1:xk—gf(") X1 — Xy :gT(k). ... (31)
9+ (%) 9™ (%)
Then
X1 = X — 20 (%)
[0 (6)+59% (x — 380y 1 g (x, — 280y L6 g (x, ~3 Ry 4
9 (x — 4701y 1590 (x, ~5 Ry 1 g (x —R(x )]
... (32)
(u-1)
X
Where R(xk)ng(k).
9+ (%)

Hence, eq. (32) is Weddle's iterated method for solving nonlinear equations for multiple roots.
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The Weddle's Method Notation
It is obvious if, let
Fu 0O = g (0 +5g% (x— S8 1+ g (x =2 B8y 1 6g @ (x — 388D 4
g (x— 452y + 55 (x — 558y 4 g (x — ROD)
. (33)
Then by setting x=9,
Fr(#) =799 (@) +59 % (p—Z8) 1+ g (32 B8y L 6g 0 (p—3RLy
R R
g (p— 48 + 59 (p—5 5Ly 1 g (p— R(p))
. (34)

Fr(#)=9" (#) +59“ (9) + 9 (#) + 69 (¢) + g (9) +59“ (#) + 3 (#)

=209 (¢)

9“?(9)
here R(¢) = =
Where R =g g)

So,

R(x)
5 ) -

()

R'(X)
6

R(x)

Fa ()= g% (0 +5g%" (x+

)+ 9P (x+2(
R(x)

)

R(x) R (X)

6g(;z+1)(x 3( ))+g(}l+1)(x+4(

) @-3(

())) - S(L» g (

) —-4(

) +

59D (x+5( —R(x)) @—-R'(x))

Then by setting x=¢ in the eq. (37) we get:

Fa@) =9 (#) +534 (p+ 58y - B

R (¢)

)+ gU P (p+2(— )N A~

69 (p+3(CE Py a-3 2 é"”» - g“+1>(¢+4( By a- 4(R 2y

5@ (g + 5(@)) a5 (@» + g% (¢~ R(¢)) A— R(#))

()

.. (38)

Where R'(¢) =1, Therefore F!(¢)=10g“" (¢).
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Convergence of Weddle’s Rule Iterated Method
The following theorem takes into consideration how the convergence of the suggested
method behaves when there are multiple roots.

Theorem 2.

For an open interval D, let ¢ be a multiple root of multiplicity p of a suitably differentiable
functiong : D = R — R, If Xo is sufficiently near to ¢ , the method described in (32) has at least

third order convergence,
Proof: -

Assume thatx, ., = q(x,), therefore

209" (x) 209 (x) 209%™ (x) F; (x)
X)=X————=—>q'(x)=1- + : ... (39
W= T TR (F, ()" 9
0'(x) = 209" (x) N 209" (x)F'(x) . 209" (x) Fp (X)+209" (x) Fr (x) 409" (x)(Fy (%))°
Fa (X) (F, (x)* (F(¥)? (F,(x)’°
.. (40)
Since ¢ is the multiple root of g™ (x) and g™ (¢) = 0 therefore thus
(#) (u-1) ’
q,(¢)=1_209 (@) , 209 (¢)'2:m(¢)
Fn (4) (Fu (4) . (41)
_1-20070) ,5_g
209 (¢)
And
q"(x) = — 20g“? (x) L 200" () F'(x) 209" (X)F,(x) +209g )RR () 409%™ () (Fp(x)?
Fn (X) Fn (X) (Fn () (Fa (0)°
. (42)

Since ¢ is the multiple root of g™ (x) and g™ (¢) = 0 therefore thus

209" (4) , 209" (AFL(#) 209" (#)Fr(#)+209" () Fi(4) 409" (¢) (Fy(4)°

TO=""¢ (F. (#)’ (F. )’ (F. (@)
' .. (43)
(u+1) ’ '
wp =200 RO FL@)  FOF@ 0
209“ () (Fu(d) (F. (#)) ,
_1,100"M6@) 1000) 200U g
F. (@) F. (@) 209% (g)

.. (44)
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It's proved.

Numerical examples

Newton method (2) (namely NMM) and Simpsons method [4] (namely SMM) for multiple roots.

In this section, we employed the present method (5) (hamely BMM) and method (8)
(namely WMM) to solve multiple-root nonlinear equations and compare the results with the

Displayed in Table 1 functions, initial point Xo, approximate zeroes ¢ and multiplicity

,Displayed in Table 2 is the number of iterations (IT) such that| f (xn)| <1.E —64, found up to

the 28" decimal place, the computations are performed using software Maple 18,

For comparison, the following functions are given.

Table 1. Shows functions, multiplicity with approximate roots.

No. | Function Xo H | @

1 £,(x) = (x2 +sin(X) _1)3 1.9 3 |0.4099920179891371316212583765
! 5" 4

2 f, (x) = (exp(x) + x —20)° 45 3 | 2.842438953784447067816585940
3 | fo(X)=(exp(x® +7x —30))? 3.6 2 3.0
4 f,(x) = ((sin x)? — x* +1)? 2.0 2 | 1.404491648215341226035086818
5 f. (x) = (cos x —x) 2 1.0 2 10.7390851332151606416553120877
6 | f,00=(exp (x°)-1)° 0.65 2 0
7 f.(x)=(nx+ Jx - 5)* 5.9 4 | 8.309432694231571795346955683
8 fa(X)= (x* -10)* 3.0 4 | 2.154434690031883721759293567
9 f7(x):(x3 -10)* 3.1 5 3.0

10 fo(X)=((x+2) e* - 1)° 0.01 5 -0.4428544010023388583141328000
11 | f,(x)=(exp (x*) -1 0.8 3 0

12 | f,(x)= (x® +4x* -10)° 3.0 2 | 1.365230013414096845760806829
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Table 2. Shows iteration numbers between the iterative methods NMM, SMM, BMM and

WMM.
F NMM SMM BMM WMM

fa 7 7 7 8
f2 7 7 7 8
fs div div div Div
fa 6 5 5 5
fs 5 4 4 4
fe 6 65 5 5
f 5 5 5 5
fs 6 6 6 6
fo 4 5 5 5
f10 5 7 7 7
f11 32 36 3 3
f12 31 28 12 12

div.: represent divergence.

Table 3. Showsf(x,) between the iterative methods NMM, SMM, BMM and WMM.

F NMM SMM BMM WMM
f1 8.10-82 1.10-82 1.10-82 0

f2 0 0 0 0

fs div div div Div
fa 0 0 0 0

fs 0 0 0 0

fe 0 0 6.10-43 0

f7 0 0 5.10-72 0

fs 1.10-104 0 5.10-87 5. 10-87
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fo 6.10-76 0 0 0

fio 5.10-88 -1.10-140 -1.10-140 -1.10-140
fi1 2.99-33 4.95-33 8.40-46 8.40-46
f12 2.56-66 6.01-33 2.79-34 2.79-34

From the above table 2, contain that:

i)

i)

In cases, fe,f11, fi12 the new methods had less than number of iterations of the other
methods Newton’s methods and Simpson’s method for multiple roots of nonlinear
equations. This means that the new methods faster and more effective when compared
with the other methods.

In cases, f, and fo the methods divergent or more than iteration number with the other
methods, this means not effective in that cases.

In the most cases, all methods had the same performance, this means methods can
compute with the other iterative methods for solving nonlinear equations of multiple
roots.

CONCLUSION:

This paper has proposed and developed two new iterative methods for solving nonlinear equations
with multiple roots. These methods namely BMM and WMM methods. Preserved the order
convergence of the classical method NMM with BMM and WMM methods performing extremely
well in terms of a lesser number of iterations required for all computations when compared with
other existing methods. In addition. The new two methods are competitive with several other
methods, according to numerical testing .These methods were programmed by using software

Maple 18.
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