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ABSTRACT:  

Background: In this study, we decompose a non-homogeneous second-order partial differential equation into 

a homogeneous part and a non-homogeneous part. Previous research on the existence and uniqueness of 

solutions for both sections provide a clear mathematical foundation. The main goal of this research is to divide 

the partial differential equation into two separate parts: one homogeneous and one non-homogeneous. These 

parts are then addressed using initial conditions along with various boundary and overdetermination 

conditions. 

Materials and Methods: We use the finite difference method to numerically solve both the homogeneous and 

non-homogeneous components. Various boundary conditions are considered, including Dirichlet, Neumann, 

and mixed conditions, each requiring specific supplementary information. To assess the stability of the 

numerical solutions, we introduce different noise levels and apply Tikhonov regularization to stabilize the 

results.  

Results: Several numerical examples are presented to evaluate the effectiveness of the proposed approach. 

The findings indicate that the finite difference method yields accurate solutions under a range of boundary 

conditions, and that Tikhonov regularization effectively enhances stability in noisy environments.  

Conclusion: The numerical results validate the robustness and reliability of the proposed method. By 

combining Tikhonov regularization with finite difference discretization, this study establishes an efficient 

framework for solving non-homogeneous second-order partial differential equations under various 

boundary conditions. The research results indicate that, under various boundary, extra, and initial conditions, 

we can solve the problem and find convergent solutions for both parts. 

 

Keywords: Inverse and direct problem; Finite difference method; Regularization; Second-order partial 

differential equation.  
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1. INTRODUCTION  

Partial Differential Equations (PDEs) are fundamental mathematical models describing a wide range 

of physical, biological, and engineering phenomena involving functions of several independent 

variables and their partial derivatives. They naturally arise in processes where quantities vary 

continuously in both space and time, such as heat conduction, wave propagation, fluid dynamics, 

quantum mechanics, and elasticity theory. Mathematically, a PDE involves an unknown function and 

its partial derivatives with respect to spatial and temporal variables. PDEs are typically classified by 

order, linearity, and type: elliptic PDEs (e.g., Laplace’s equation) describe steady-state phenomena 

such as electrostatics and incompressible fluid flow; parabolic PDEs (e.g., the heat equation) model 

diffusive processes with gradual temporal changes; and hyperbolic PDEs (e.g., the wave equation) 

represent dynamic systems with finite propagation speeds, such as vibrations, acoustic waves, and 

seismic activity. This study addresses an inverse force problem for the one-dimensional non-

homogeneous second-order hyperbolic PDE, aiming to reconstruct a spatially dependent force 

function from observed data. To ensure uniqueness, the forcing function is assumed to depend only 

on the spatial variable. Theoretical guarantees for uniqueness and continuous dependence on data 

were established in [1], which also introduced optimization-based techniques such as linear 

programming and least squares. The Boundary Element Method (BEM) and the Finite Element 

Method (FEM) are numerical techniques used to solve partial differential equations and have been 

widely studied in the literature. For example, BEM has been employed to address partial differential 

equations (wave equation) with a constant wave speed by using the fundamental solution [2],[15], 

especially when the force term is free. However, these methods become less suitable when dealing 

with variable wave speeds or non-free force terms. Therefore, in order to extend this range of 

applicability, in this paper the numerical method for discretizing the partial differential equations 

(wave equation) is the finite difference method (FDM). Previous works have explored related 

problems using a various of methods. For instance, [2] employed the Boundary Element Method 

(BEM) with Dirichlet boundary conditions, while [3],[4],[5],[6] applied a hybrid BEM and Finite 

Difference Method (FDM) approach. Some studies [1],[3],[7] used separation of variables to 

discretize the wave equation under the assumption of constant wave speed. In contrast, this work 

applies the Finite Difference Method exclusively for both the direct and inverse problems. The choice 

of FDM is motivated by its simplicity, ease of implementation, and effectiveness for time-dependent 

PDEs. The problem is decomposed via the principle of superposition into two parts: Part one: A direct 

problem with a zero forcing term. Second part: An inverse problem with homogeneous boundary and 

initial conditions, which, reduces to a linear least-squares system. A problem “part one” is considered 

well-posed, according to literature, if it satisfies three criteria: the solution exists for all given data, it 

is unique, and it depends continuously on the data (stability), meaning that small errors in the input 

result in only small errors in the output. The problem “second part” is called ill-posed if any of these 

criteria are not met, meaning it may have no solution, multiple solutions, or unstable solutions—

where even minor errors in the input can cause extremely large errors in the output. Most difficulties 

in solving these problems arise from this fundamental instability [17]-[19]. 

        Because inverse problems are inherently ill-posed, this system is ill-conditioned because small 

boundary data errors can cause significant force errors. Tikhonov regularization improves stability, 

with the regularization parameter chosen based on the norm error. Numerical results show the method 

provides stable, reliable outcomes. Moreover, we employ zeroth-order Tikhonov regularization [8], 
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with the regularization parameter chosen via the norm error criterion [2]. Several boundary condition 

types, Dirichlet, Neumann, and mixed, are investigated. In mixed cases, one well-known boundary 

condition is prescribed while the displacement at the opposite boundary is treated as additional input 

data.  

     To evaluate stability, controlled noise is added to the synthetic data. The impact of noise and the 

effectiveness of the regularization strategy are analyzed numerically [9] and [10]. This work extends 

previous studies by introducing alternative supplementary data and boundary conditions, allowing 

assessment of their effect on reconstruction accuracy, an aspect not addressed in [2],[3],[4],[6],[7]. 

The proposed method demonstrates high accuracy and consistency, with results remain stable under 

various conditions, confirming the reliability of the approach.  

     The remainder of the paper is organized as follows: Section 2 presents the mathematical 

formulation of the problem, Section 3 discusses numerical results and analysis, and Section 4 

concludes the study.  

2. MATHEMATICAL FORMULATION:  

The mathematical model describing the vibration of a bounded structure subjected to an external 

force is governed by the classical non-homogeneous partial equation, as presented in 

[2],[3],[5],[11],[16]:     

                          𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 + 𝑓(𝑥),    𝑥 ∈ (0, 𝐿) × (0, 𝑇), 𝑇 > 0                                       (1)    

                          𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑣0(𝑥),     𝑥 ∈ [0, 𝐿],                                       (2)  

equation (2) gives the initial condition, and this study has looked at six different cases for the 

boundary conditions, with an extra condition as follows: 

 

 Boundary condition I (BCI):  

                                   𝑢(0, 𝑡) = 𝑝0(𝑡),     𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡),           𝑡 ∈ [0, 𝑇]                             (3)  

                                   𝑢𝑥(𝐿, 𝑡) = 𝑞𝐿(𝑡),                                     𝑡 ∈ [0, 𝑇]                              (4)                          

 Boundary condition II (BCII):  

                                     𝑢(0, 𝑡) = 𝑝0(𝑡),    𝑢𝑥(𝐿, 𝑡) = 𝑞𝐿(𝑡),        𝑡 ∈ [0, 𝑇]                             (5) 

                                     𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡),                                           𝑡 ∈ [0, 𝑇]                              (6) 

 Boundary condition III (BCIII): Using the same boundary condition (3) from BCI, plus an 

extra condition: 

                                   𝑢𝑥(0, 𝑡) = 𝑞0(𝑡),                                           𝑡 ∈ [0, 𝑇]                              (7)  

 Boundary condition IV (BCIV):  

                                  𝑢𝑥(0, 𝑡) = 𝑞0(𝑥),     𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡),         𝑡 ∈ [0, 𝑇]                              (8)  

                                  𝑢(0, 𝑡) = 𝑝0(𝑡),                                              𝑡 ∈ [0. 𝑇]                              (9)  

 Boundary condition V (BCV): we are using the same boundary condition (8) from BCIV, 

along with an extra condition that is specific to this problem: 

                                   𝑢(𝑥, 𝑇) = 𝑢𝑇(𝑥),                         𝑥 ∈ [0, 𝐿],     𝑇 > 0                             (10) 

mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive


Article  
JOURNAL OF UNIVERSITY OF BABYLON 

For Pure and Applied Sciences (JUBPAS)  
Vol.  33 ; No.4  | 2025  

 

Page | 342 

 

in
fo

@
jo

u
rn

al
o

fb
ab

yl
o

n
.c

o
m

   
|  

 ju
b

@
it

n
e

t.
u

o
b

ab
yl

o
n

.e
d

u
.iq

 | 
w

w
w

.jo
u

rn
al

o
fb

ab
yl

o
n

.c
o

m
   

   
   

   
   

IS
S

N
: 2

31
2-

8
13

5 
 | 

 P
ri

n
t 

IS
S

N
: 

19
9

2-
0

6
52

 

ــم
ج

جلــة 
ــــ

امعة ب
ـ

ل للعلــ
ـابــ

ــــــ
ص

وم ال
ـــ

رفــة 
ط

والت
ــ

بيقي
ــ

 ة
ــم

ج
جلــة 

ـــــ
امعة بـ

ــ
ل للعلـ

ـابــ
ـ

ص
وم ال

ـــ
ط

رفــة والت
ــ

بيقي
ــ

 ة
ـم

ج
جلــة 

ـــ
امعة بـ
ـ

ل للعلـ
ـابــ

ــ
ص

وم ال
ـ

ط
رفــة والت

ـــــــ
بيقي

ــ
 ة

 

 Boundary condition VI (BCIV): both the additional criterion (10) and the boundary condition 

(5) from the BCII have been implemented here. 

Where {𝑥, 𝑡, 𝑢, 𝑢0, 𝑣0} variables denote {space, time, displacement, starting displacement, velocity}, 

respectively. Equation (3) represents Dirichlet boundary conditions; equations (5) and (8) correspond 

to mixed boundary conditions; while equations (4), (6), (7), (9), and (10) provide additional data 

conditions. Table 1 outlines all six problems, clearly stating the boundary conditions and the 

additional conditions applied in this study. 

 

Table 1. Non-homogeneous partial equation with six different boundary conditions and additional 

conditions. 

Main Problem 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 + 𝑓(𝑥) 

ICs 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑣0(𝑥) 

BCI BCII BCIII BCIV BCV BCVI 

𝑢(0, 𝑡) = 𝑝0(𝑡) 𝑢(0, 𝑡) = 𝑝0(𝑡) 𝑢(0, 𝑡) = 𝑝0(𝑡) 𝑢𝑥(0, 𝑡) = 𝑞0(𝑥) 𝑢𝑥(0, 𝑡) = 𝑞0(𝑥) 𝑢(0, 𝑡) = 𝑝0(𝑡) 

𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡) 𝑢𝑥(𝐿, 𝑡) = 𝑞𝐿(𝑡) 𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡) 𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡) 𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡) 𝑢𝑥(𝐿, 𝑡) = 𝑞𝐿(𝑡) 

Extra Condition 

𝑢𝑥(𝐿, 𝑡) = 𝑞𝐿(𝑡) 𝑢(𝐿, 𝑡) = 𝑝𝐿(𝑡) 𝑢𝑥(0, 𝑡) = 𝑞0(𝑡) 𝑢(0, 𝑡) = 𝑝0(𝑡) 𝑢(𝑥, 𝑇) = 𝑢𝑇(𝑥) 𝑢(𝑥, 𝑇) = 𝑢𝑇(𝑥) 

 

     This study examines a non-homogeneous PDE (𝑢, 𝑓) as both a direct and an inverse problem. 

When 𝑓 is known, it forms the direct problems (1) and (2), such that: Problems 1 and 3 uses (3), 

Problems 2 and 6 use (5), and Problems 4 and 5 use (8) as a boundary condition. And if 𝑓 is 

unknown, additional conditions are needed to figure out (𝑢, 𝑓) : Problem 1 uses equation (4), 

Problem 2 uses equation (6), Problem 3 uses equation (7), Problem 4 uses equation (9), and 

Problems 5 and 6 use equation (10).    

                      

     For existence and uniqueness, this research relies on the theorems and requirements outlined in 

[2]-[5],[7],[10],[11].  We assume that all conditions are as functions of time over the interval 𝑇 > 0, 

except for the last condition, which is enforced in terms of 𝑥. The goal of the inverse problem is to 

find the pair (𝑢(𝑥, 𝑡), 𝑓(𝑥)) that satisfies equations (1)-(10). Note that 𝑓(𝑥) must depend only on 𝑥; 

if 𝑓(𝑥)   also depends on 𝑡 , then u(𝑥, 𝑡)  can be modified by adding a term of the form 

(𝑡2𝑥2(𝑥 − 𝐿)2𝑈(𝑥, 𝑡)) , where 𝑈 ∈ 𝐶2,1[0, 𝐿]Χ[0, ∞] , resulting in a different solution. Although 

equation (10) includes 𝑥, the other measurements (4), (6), (7), and (9) depend on time, while the 

unknown force 𝑓(𝑥) in this context is a function of space. Cannon and Dunninger (1970) [1] also 

showed that problems (1)-(10) have at most one solution, ensuring uniqueness, and provided 

additional supporting theorems in [12],[13] as follows:  

Theorem 1 [12]. Assume that  𝑅𝑛 is boundary star-shaper domain with a sufficiently smooth 

boundary such that 𝑇 > 𝑑𝑖𝑎𝑚(Ω), such that 𝑢𝑡𝑡(𝑥  , 𝑡) = 𝛻2𝑢(𝑥  , 𝑡) + 𝑓(𝑥)ℎ(𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω ×
(0, 𝑇)). Then the inverse problem (2)-(10) has at most one solution (𝑢( 𝑥; 𝑡), 𝑓(𝑥)), where ℎ = 1 and  

1) ℎ ∈ 𝐻2(0, 𝑇; 𝐿∞(Ω))  be such that ℎ(. ,0) ∈ 𝐿∞(Ω), ℎ𝑡(. ,0) ∈ 𝐿∞(Ω) and    
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 𝐻 ≔
 ‖ℎ𝑡𝑡‖

𝐿2 (0,𝑇;𝐿∞(Ω))  
 

𝑖𝑛𝑓𝑥∈Ω|ℎ(𝑥,0)|
   is sufficiently small. 

2) 𝑢 ∈ 𝐿2(0, 𝑇: 𝐻1(Ω)), 𝑢𝑡 ∈ 𝐿2(0, 𝑇: 𝐿2(Ω)), 𝑢𝑡𝑡 ∈ 𝐿2(0, 𝑇: 𝐻1(Ω)′), 𝑓 ∈ 𝐿2(Ω), where Γ = 𝜕Ω 

3) The Neumann observation (𝜕 (𝑥, 𝑡) = 𝑞 (𝑥, 𝑡), (𝑥, 𝑡) ∈ Γ × 𝜕𝑣 (0, 𝑇)) must be applied 

throughout the entire boundary Γ = 𝜕Ω in order for the previously mentioned uniqueness 

Theorem (1) to hold.  

 

Theorem 2 [13]. Assume that Ω ⊂ 𝑅𝑛 is a bounded star-shaped domain with smooth boundary such 

that 𝑇 > 𝑑𝑖𝑎𝑚. Let ℎ ∈ C1[0, 𝑇] be independent of 𝑥 such that equation 

(𝑢𝑡𝑡(𝑥  , 𝑡) = 𝛻2𝑢(𝑥  , 𝑡)  +𝑓(𝑥)ℎ(𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇))  becomes:  

                                𝑢𝑡𝑡(𝑥  , 𝑡) = 𝛻2𝑢(𝑥  , 𝑡)  +𝑓(𝑥)ℎ(𝑥),     (𝑥, 𝑡) ∈ Ω × (0, 𝑇)                         

and assume further that ℎ(0) ≠ 0. Then the inverse problem  

𝑢(𝑥, 0) = 𝜑(𝑥),    𝑥 ∈ Ω         , 𝑢𝑡(𝑥, 0) = 𝜓(𝑥), 𝑥 ∈ Ω   

  𝑢(𝑥, 𝑡) = 𝑝(𝑥 , 𝑡) , (𝑥 , 𝑡)  ∈ 𝜕Ω × (0, 𝑇),     
𝜕𝑢

𝜕𝑣
 (𝑥 , 𝑡) = 𝑞(𝑥 , 𝑡), (𝑥 , 𝑡) ∈ 𝛤 × (0, 𝑇) 

And equation (24) has at most one solution in the class of functions  

𝑢 ∈ 𝑐1([0, 𝑇];   𝐻1(Ω)) ∩ 𝑐2([0, 𝑇]; 𝐿2(Ω)),    𝑓 ∈ 𝐿2(Ω),                                      

in above equation 𝑐𝑚([0, 𝑇]; 𝑋), where 𝑚 ∈ {1, 2} and 𝑋 ∈ {𝐻1(Ω), 𝐿2(Ω)}, denotes the space of m-

times continuously differentiable functions defined on [0, 𝑇] with values in 𝑋. 

 

     To approach Problems (1) and (2), is split 𝑢 into 𝑣 + 𝑤 [1]-[4]: (𝑖) the direct problem 𝑣(𝑥, 𝑡) 

satisfies the homogeneous partial differential equation 𝑣𝑡𝑡 = 𝑣𝑥𝑥 , subject to the same initial and 

boundary conditions as in the preceding above problems. (𝑖𝑖) the inverse problem 𝑤𝑡𝑡 = 𝑤𝑥𝑥 + 𝑓(𝑥), 

with the zero initial condition and the boundary conditions, and include an extra condition for each 

problem as follows, where 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ [0, 𝐿]:  

 Problem 1: 𝑤𝑥(𝐿, 𝑡) = 𝑞𝐿(𝑡) − 𝑣𝑥(𝐿, 𝑡),                                      

 Problem 2: 𝑤(𝐿, 𝑡) = 𝑝𝐿(𝑡) − 𝑣(𝐿, 𝑡),                                              

 Problem 3: 𝑤𝑥(0, 𝑡) = 𝑞0(𝑡) − 𝑣𝑥(0, 𝑡),                                          

 Problem 4: 𝑤(0, 𝑡) = 𝑝0(𝑡) − 𝑣(0, 𝑡),                                             

 Problems 5 and 6: 𝑤(𝑥, 𝑇) = 𝑢𝑇(𝑥) − 𝑣(𝑥, 𝑇). 

 

             Furthermore, Table 2 illustrates how the partial differential equations are divided into 

direct and inverse problems, including the six boundary and additional conditions relevant to 

each. 
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Table 2. Splitting the non-homogeneous partial equation into direct and inverse problems with 

initial and six boundary and extreme conditions 
𝑢 =𝑣 + 𝑤 

𝑣(𝑥, 𝑡) satisfies the direct problem 𝑣𝑡𝑡 = 𝑣𝑥𝑥  𝑤 satisfies the inverse problem 𝑤𝑡𝑡 = 𝑤𝑥𝑥 + 𝑓(𝑥) 

subject to the same initial and boundary conditions as in 

Table 1 

with the zero initial condition and the boundary conditions 

Extra condition 

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 

𝑤𝑥(𝐿, 𝑡) =
𝑞𝐿(𝑡) − 𝑣𝑥(𝐿, 𝑡)  

𝑤(𝐿, 𝑡) =
𝑝𝐿(𝑡) − 𝑣(𝐿, 𝑡)  

𝑤𝑥(0, 𝑡) =
𝑞0(𝑡) − 𝑣𝑥(0, 𝑡)  

𝑤(0, 𝑡) =
𝑝0(𝑡) − 𝑣(0, 𝑡)  

𝑤(𝑥, 𝑇) =
𝑢𝑇(𝑥) − 𝑣(𝑥, 𝑇)  

𝑤(𝑥, 𝑇) =
   𝑢𝑇(𝑥) − 𝑣(𝑥, 𝑇)  

 

 

Algorithm for Solving Equation (1) 

 Step 1: Solve the homogeneous equation 𝑣𝑡𝑡 = 𝑣𝑥𝑥 (direct problem) using the same initial 

and boundary conditions as Equation (1) to determine 𝑣 and any additional conditions needed. 

 Step 2: Using the extra conditions from Step 1, solve the nonhomogeneous equation 𝑤𝑡𝑡 =
𝑤𝑥𝑥 + 𝑓(𝑥) (inverse problem) with zero initial and boundary conditions. After discretization, 

a linear system is created and simplified (due to linearity) to find the source term 𝑓(𝑥). Once 

𝑓(𝑥) is determined, 𝑤 is computed. 

 Step 3: Use 𝑢 = 𝑣 + 𝑤 to find the solution to the original problem (1). 

 Step 4: Because the inverse problem is ill-posed, noise is added to the additional condition 

to evaluate stability. Tikhonov regularization is employed to stabilize the solution. 

 

The following section and numerical examples provide an explanation of how this algorithm and its 

steps work in detail. 

 

2.1 Direct problem  

In the first part, the function 𝑣 represents a well-posed direct problem without any external force. In 

mathematical physics, a direct problem involves modeling physical fields like electromagnetic, 

acoustic, seismic, wave, or heat transfer. It aims to find a function describing the field or process at 

any location and time, especially if non-stationary. In this study governed by the homogeneous partial 

differential equation (𝑣𝑡𝑡 = 𝑣𝑥𝑥). Numerically, we employ the Finite Difference Method (FDM) using 

the initial condition given in equation (2), together with one of the boundary conditions specified in 

equations (3), (5), (7), or (9), as discussed in [1],[4],[5],[11],[14],[15]. 

   𝑣𝑖+1,𝑗 = 𝑟2( 𝑣𝑖+1,𝑗 + 𝑣𝑖−1,𝑗) + 2(1 − 𝑟2)𝑣𝑖,𝑗 − 𝑣𝑖,𝑗−1 ,                 𝑖 = 1,2, … , (𝑀 − 1),  

                                                                                                                    𝑗 = 1,2, … , (𝑁 − 1)               (11) 

                                                                                                        

   𝑣𝑖,0 = 𝑢0(𝑥𝑖 ),     𝑖 = 0,1, … , 𝑀,                  𝑣0(𝑥𝑖) =
 𝑣𝑖,1−𝑣𝑖,−1   

2∆𝑡
,   𝑖 = 1,2, … , (𝑀 − 1)                (12)  

Six different boundary conditions listed in Table 1 are analyzed. This section describes how each 

condition is discretized and specifies where they are applied in Problems 1–6: 
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Problems 1 and 3:        𝑣0,𝑗 = 𝑝0 (𝑡𝑗  ),        𝑣𝑀,𝑗 = 𝑝𝐿 (𝑡𝑗 ),                        𝑗 = 1,2, … . 𝑁                  (13) 

Problems 2 and 6:𝑣0,𝑗 = 𝑝0 (𝑡𝑗  ) ,    
𝜕𝑣

𝜕𝑥
(𝐿, 𝑡𝑗) =

3𝑣𝑀,𝑗− 4𝑣𝑀−1,𝑗+𝑣𝑀−2,𝑗

2∆𝑥
= 𝑞𝐿 (𝑡𝑗  ),    𝑗 = 1,2, . . , 𝑁  (14)    

Problems 4 and 5: 
𝜕𝑣

𝜕𝑥
(0, 𝑡𝑗) =

4𝑣1,𝑗−𝑣2,𝑗−3𝑣0,𝑗 

2∆𝑥
,   𝑣𝑀,𝑗 = 𝑝𝐿 (𝑡𝑗  ),              𝑗 = 1,2, … . 𝑁                  (15) 

  by using equation (11) with 𝑗 = 0 and using (12) we obtain 

        𝑣𝑖,1 =
 1 

2
 𝑟2 (𝑢0(𝑥𝑖+1 ) + 𝑢0(𝑥𝑖−1 )) + (1 − 𝑟2 )𝑢0(𝑥𝑖 )  + ∆𝑡𝑣0(𝑥𝑖 ),   𝑗 =  0,1, … , 𝑁,      (16) 

where 𝑣𝑖,𝑗= 𝑣(𝑥𝑖 , 𝑡𝑗 ), 𝑥𝑖 = 𝑖∆𝑥,  𝑡𝑗 = 𝑗∆𝑡  𝑎𝑛𝑑 𝑟 = 𝑐∆𝑡/∆𝑥, 𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑀, 𝑗 = 0,1, … 𝑁 , in 

addition ∆𝑥 =
𝐿

𝑀
  𝑎𝑛𝑑 ∆𝑡 =

𝑇

𝑁
 ,  such that divide the domain ( 0, 𝐿) × (0, 𝑇) into  𝑀 𝑎𝑛𝑑 𝑁 [2]-

[4],[6],[7],[11],[15].  

2.2 Inverse and III-posed problem:  

This section discusses the inverse problem (𝑤, 𝑓)   using the Finite Difference Method (FDM). 

Address inverse and ill-posed problems in real situations, like estimating epicardial potentials from 

surface measurements in electrocardiography or identifying obstacles via inverse scattering of far-

field patterns. Inferring causes from effects is an inverse problem. These challenges are often ill-

posed, meaning solutions may not exist, may be multiple, or be very sensitive to measurement errors, 

leading to inaccuracies. Where 𝑤 (𝑥𝑖, 𝑡𝑗) = 𝑤𝑖,𝑗 and 𝑓𝑖 = 𝑓(𝑥𝑖). It introduces new work in this research 

for solving 𝑤𝑡𝑡 = 𝑤𝑥𝑥 + 𝑓(𝑥)  with zero initial and boundary conditions 

𝑤𝑖,𝑗+1 − ∆𝑡2𝑓𝑖 = 𝑟2(𝑤𝑖−1,𝑗 + 𝑤𝑖+1,𝑗 ) + 2(1 − 𝑟2)𝑤𝑖,𝑗 − 𝑤𝑖,𝑗−1        𝑖 = 1, … , (𝑀 − 1), 

                                                                                                              𝑗 = 1,2, … (𝑁 − 1)             (17)  

𝑤(𝑥𝑖, 0) = 𝑤𝑖0 = 0, 𝑤𝑡(𝑥𝑖, 0) = 0;     Problems 1 and 3:  𝑤(0, 𝑡𝑗) = 𝑤(𝐿, 𝑡𝑗  ) = 0;    

Problems 2 and 6:  𝑤(0, 𝑡𝑗) =  𝑤𝑥(𝐿, 𝑡𝑗  ) = 0;  Problems 4 and 5:  𝑤𝑥 (0, 𝑡𝑗) =  𝑤(𝐿, 𝑡𝑗) = 0;  

𝑤𝑖,1 −
1

2
 𝑑𝑡2𝑓𝑖 =

1

2
𝑟2(𝑤𝑖+1,0 + 𝑤𝑖−1,0) + (1 − 𝑟2)𝑤𝑖0 + ∆𝑑𝑤𝑡 (𝑥𝑖),     𝑗 = 0, 

                                                                                                                    𝑖 = 1, … , (𝑀 − 1).         (18) 
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     The values of 𝑤𝑖,𝑗 and 𝑓𝑖 must be determined, which means an additional row and column need to 

be added. To do this, we used an extra condition in equations (4), (6), (7), (9), and (10), plus finding 

𝑣𝑥(0, 𝑡𝑗), 𝑣(𝐿, 𝑡𝑗), 𝑣𝑥(0, 𝑡𝑗), 𝑣(0, 𝑡𝑗), and 𝑣𝑇(𝑥𝑖) from equations (11-16), we derive the following 

extra condition to determine (𝑤(𝑥, 𝑡), 𝑓(𝑥)):              

Problem 1:   𝑤𝑥(𝐿, 𝑡𝑗) = 𝑞𝐿(𝑡𝑗) − 𝑣𝑥(𝐿, 𝑡𝑗),               𝑗 = 0,1, …, 𝑁                                             (19) 

Problem 2:  𝑤(𝐿, 𝑡𝑗) = 𝑝𝐿(𝑡𝑗) − 𝑣(𝐿, 𝑡𝑗),                    𝑗 = 0,1, …, 𝑁                                            (20)  

Problem 3: 𝑤𝑥 (0, 𝑡𝑗) = 𝑞0 (𝑡𝑗) − 𝑣𝑥(0, 𝑡𝑗),                   𝑗 = 0,1, … , 𝑁                                                 (21) 

Problem 4: 𝑤(0, 𝑡𝑗  ) = 𝑝0( 𝑡𝑗) − 𝑣(0, 𝑡𝑗) ,                     𝑗 = 0,1, … , 𝑁                                                 (22) 

Problems 5 and 6:  𝑤(𝑥𝑖 , 𝑇) = 𝑢𝑇  (𝑥𝑖) − 𝑣𝑇(𝑥𝑖).            𝑖 = 0,1, … , 𝑀                                               (23) 

     Given the linearity of the system, the variables 𝑤𝑖,𝑗 , for 𝑖 = 1, (𝑀 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and 𝑗 = 1, 𝑁̅̅ ̅̅ ̅  can be 

eliminated, thereby reducing the problem to an ill-conditioned system of 𝑁 equations with (𝑀 − 2) 

unknowns, having a generic structure 

                                                                     𝐴𝑓 = 𝑏,                                                                          

 𝐴  represents the system matrix, and 𝑏 denotes the right-hand side vector. Since the system is 

overdetermined, such that for (30) apply the method of least squares to obtain an approximate solution 

                                                            

                                                                     𝑓 = (𝐴𝑇 𝐴 )−1 𝐴𝑇𝑏.                                                          (24) 

Here, the superscript 𝑇 indicates the transpose operation. Existence and uniqueness were established 

in [1],[2],[11]. 

 

2.2.1 Stability:  

As outlined in the theory, all conditions apply, but the key task is to check stability. Most challenges 

in solving ill-posed problems arise from solution instability. As a result, the term "ill-posed problems" 

is frequently used to refer to unstable problems. To check stability, we introduce noise as an additional 

condition, as described in equations (4), (6), (7), (9), and (10) for Problems 1, 2, 3, and 4, 

respectively. The noise is modeled using a Gaussian normal distribution with a mean of zero and a 

standard deviation 𝜎, as defined for each problem in equations (26)-(30). The noise levels typically 
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used, according to the literature, are {1%, 3%, 5%}, and we use these values in our analysis. The 

process is implemented using MATLAB programming, employing the function “normal”: 

Problem 1: 𝑤𝑥
𝜖 (𝐿, 𝑡𝑛) = 𝑞𝐿

𝜖 ( 𝑡𝑛) − 𝑣𝑥(𝐿, 𝑡𝑛) = 𝑤𝑥(𝐿, 𝑡𝑛) + 𝜖,        𝑛 = 1,2, … , 𝑁                               (25) 

                     𝑞𝐿
𝜖 ( 𝑡𝑛) = 𝑞𝐿

 ( 𝑡𝑛) + 𝜖;             𝜎 = 𝑝% × 𝑚𝑎𝑥𝑡∈[0,𝑇]|  𝑞𝐿(𝑡)|                                                                         

Problem 2:      𝑤𝜖(𝐿, 𝑡𝑛) = 𝑝𝐿
𝜖 ( 𝑡𝑛) − 𝑣(𝐿, 𝑡𝑛) = 𝑤(𝐿, 𝑡𝑛) + 𝜖,       𝑛 = 1,2, … , 𝑁                           (26) 

                      𝑝𝐿
𝜖 ( 𝑡𝑛) = 𝑝𝐿

 ( 𝑡𝑛) + 𝜖 ;        𝜎 = 𝑝% × 𝑚𝑎𝑥𝑡∈[0,𝑇]|  𝑝𝐿(t)|                 

                                                                                                                

Problem 3:    𝑤𝑥
𝜖 (0, 𝑡𝑛) = 𝑞0

𝜖 ( 𝑡𝑛) − 𝑣𝑥(0, 𝑡𝑛) = 𝑤𝑥(0, 𝑡𝑛) + 𝜖,        𝑛 = 1,2, … , 𝑁                       (27) 

                      𝑞0
𝜖( 𝑡𝑛) = 𝑞0

 ( t) + 𝜖;           𝜎 = 𝑝% × 𝑚𝑎𝑥𝑡∈[0,𝑇]|  𝑞0(t)|                                      

                                                                                

Problem 4:     𝑤𝜖(0, 𝑡𝑛) = 𝑝0
𝜖 ( 𝑡𝑛) − 𝑣(0, 𝑡𝑛) = 𝑤(0, 𝑡𝑛) + 𝜖,       𝑛 = 1,2, … , 𝑁                           (28)           

                      𝑝0
𝜖 ( 𝑡𝑛) = 𝑝0

 ( 𝑡𝑛) + 𝜖;         𝜎 = 𝑝% × 𝑚𝑎𝑥𝑡∈[0,𝑇]|  𝑝0(t)| 

                                      

Problems 5 and 6:  𝑤𝑇
𝜖  (𝑥𝑚) = 𝑢𝑇

𝜖 (𝑥𝑚) − 𝑣𝑇(𝑥𝑚) = 𝑤𝑇(𝑥𝑚) + 𝜖 ,      𝑚 = 1,2, …, 𝑀                    (29) 

                        𝑢𝑇
𝜖 (𝑥𝑚) = 𝑢𝑇(𝑥𝑚) + 𝜖;    𝜎 = 𝑝% × 𝑚𝑎𝑥𝑥∈[0,𝐿]| 𝑢𝑇(𝑥) |  

 

     As previously stated, this noise renders the solution unstable, as seen in the numerical result and 

discussion section. To address this problem, we use zeroth-order Tikhonov regularization (for more 

information, see [2],[3],[11]). 

                                                                       𝑓𝜆 =  (𝐴𝑡𝑟𝐴 + 𝜆𝛪  )−1 𝐴𝑡𝑟𝑏𝜖  ,                                     (30)  

 

Where 𝜆 is a regularization parameter and 𝛪 is an identity matrix.  

3. NUMERICAL RESULT AND DISCUSSION  

To evaluate the impact of varying boundary conditions on the accuracy of the finite difference 

method (FDM) solution, we utilize the same example as presented in [2],[4],[5],[6],[7],[11]. 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛 (𝜋𝑥)  + 𝑡 +
𝑡2

2
  , 𝑓(𝑥) = 1 + 𝜋2𝑠𝑖𝑛 (𝜋𝑥),                       𝑥 ∈ [0,1]                      (31) 

                 𝑢(𝑥, 0) = 𝑢0(𝑥) = 𝑠𝑖𝑛 ( 𝜋𝑥) ,          𝑢𝑡(𝑥, 0) = 𝑣0 (𝑥) = 1 ,     𝑥 ∈ [0,1]                        (32) 

 

Problem 1:  𝑢(0, 𝑡) = 𝑝0(𝑡) = 𝑡 +
𝑡2

2
,                   𝑢(1, 𝑡) = 𝑝𝐿(𝑡) = 𝑡 +

𝑡2

2
,     𝑡 ∈ [0,1]               (33)               

                      𝑢𝑥(𝐿, 𝑡) = 𝑞𝐿 (𝑡) = −𝜋,                𝑡 ∈ [0,1].                                                                         (34) 
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Figure 1 shows the same results as [4, Fig. 1a].  We've included it here to demonstrate that the 

program has been used again, but this time with a different approach for the second part, which we 

refer to as the "inverse part". In addition, Figure 1 presents the numerical results for 𝑣𝑥(𝐿, 𝑡) obtained 

from equations (11)-(16), with input data (32) and (33), computed using the finite difference method 

(FDM) for three different grid resolutions, namely 𝑀 = 𝑁 = {20, 40, 80}.  

 

 

 

Figure 1. The numerical results for 𝑣𝑥 (𝐿, 𝑡) under the Dirichlet boundary condition (33) with grid 

sizes N = M = {20, 40, 80}. 

The numerical result 𝑣𝑥(𝐿, 𝑡), as seen in the above figure, is used to obtain the numerical 𝑓(𝑥), 

which means 𝑓(𝑥) through (24), obtained by applying zero initial and boundary data, the numerical 

solution 𝑣𝑥  (𝐿, 𝑡) from (19), (17), and (18), using grid sizes 𝑀 = 𝑁 = {20,40,80}. Figure 2 shows 

the results, which agree well with the exact answer (31). Comparing [4, Fig. 3a] yields similar results; 

however, this study uses the finite difference method (FDM), while [4] employed the separation of 

variables method, suggesting that FDM provides accurate approximations 

 

  

Figure 2. The exact solution (31) for 𝑓(𝑥) is compared with the numerical solution obtained from 

(24), where the Dirichlet boundary condition (33) is applied. 
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After introducing noise to the data (34) as described in (25), Figure 3 presents the resulting unstable 

numerical solutions for 𝑓(𝑥) at different noise levels 𝑝 = {1, 3, 5} %. The figure clearly demonstrates 

that increasing noise deteriorates both the stability and accuracy of the reconstruction, highlighting 

the ill-posed nature of the inverse problem and the necessity of employing regularization techniques 

to achieve reliable solutions 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3. The exact solution (31) for 𝑓(𝑥) is compared with the numerical solution (24) for 𝑝 = {1, 

3, 5} %, using noisy data. 

For a stable result, we use zeroth-order Tikhonov regularization (30). We've tested several values of 

the regularization parameter 𝜆, including {5 × 10−6, 10−6, 6 × 10−5, 10−5…100}. To find the optimal 

value of 𝜆, we calculate the norm error (35) [1],[4],[14],[16].  

                           ‖  𝑓𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 −  𝑓𝑒𝑥𝑎𝑐𝑡 ‖ = √∑ ( 𝑓𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑡𝑛) − 𝑓𝑒𝑥𝑎𝑐𝑡(  𝑡𝑛))
2𝑁

𝑛=1                      (35)  

Figures 4 and 5 demonstrate that the optimal value for accurately approximating 𝑓(𝑥), which is very 

close to the exact solution, is 𝜆 = 1 × 10−8 . This also highlights that the numerical issue 

(𝑤(𝑥, 𝑡), 𝑓(𝑥)) can be effectively addressed using the finite difference method (FDM). Additionally, 

this value of 𝜆 differs from the one presented in [4, Fig.5a].   
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Figure 4. The norm error ‖ 𝑓𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑓𝑒𝑥𝑎𝑐𝑡 ‖ is presented as a function of 𝜆 for 𝑀 = 𝑁 = 80 and 

noise 𝑝% = 1%, following the application of the Tikhonov regularization technique. The outcomes 

are displayed under boundary condition (33). 

  

 

Figure 5. A comparison is carried out between the exact solution of 𝑓(𝑥) (31), and the numerical 

solution obtained for 𝑀 = 𝑁 = 80 with 𝑝% = 1% noise for 𝜆 ∈ {7 × 10−8, 1 × 10−8, 8 × 10−7}. 

 

Note: We do not provide approximations for 𝑢(𝑥, 𝑡) because our numerical results closely match 

those in [2] and [7]. 

Problem 2:     𝑢(0, 𝑡) = 𝑝0(𝑡) = 𝑡 +
𝑡2

2
,             𝑢𝑥(𝐿, 𝑡) = 𝑞𝐿 (𝑡) = −𝜋,          𝑡 ∈ [0,1]              (36) 

                        𝑢(𝐿, 𝑡) =  𝑝𝐿(𝑡) = 𝑡 +
𝑡2

2
,               𝑡 ∈ [0, 𝑡].                                                                 (37) 

 

First, use the FDM (11)-(16) with input data (32) and (36) for 𝑀 = 𝑁 = {20, 40, 80} to find the 

numerical solution 𝑣 (𝐿, 𝑡). Although no exact analytical solution is available for direct comparison, 

the results indicate convergence and confirm the FDM’s effectiveness in capturing the behavior of 𝑣 
(𝐿, 𝑡) under the given conditions (36). Then, in [4, Fig. 1b], a similar result can be observed. As 

shown in our Figure 6, there is a strong resemblance, confirming the consistency between the two 

approaches.  
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Figure 6. The numerical results for 𝑣 (𝐿, 𝑡) under the mixed boundary condition (36), using the 

FDM with 𝑀 = 𝑁 = {20, 40, 80}. 

     Second, using the numerical value of 𝑣 (𝐿, 𝑡) from (20) and the input data in (37), we calculate the 

numerical solution of 𝑓(𝑥)  from equation (24). The accuracy and reliability of the FDM are 

confirmed by the results in Figure 7, which show excellent agreement with the exact solution (31) for 

𝑀 = 𝑁 = {20, 40, 80}. The similarity between the two approaches is further emphasized by the 

comparable trend in [4, Fig. 3b], which closely resembles our Figure 7. Notably, despite our study 

using the FDM and [4] using the method of variable separation, both methods producat the same 

result. 

 

 

Figure 7. The exact solution (31) for 𝑓(𝑥)  is compared with the numerical solution obtained from 

(24), with 𝑀 = 𝑁 = {20, 40, 80}. 

     Third, we introduce noise to the input data (37), as shown in (26) for stability analysis. The 

unstable numerical solutions for 𝑓(𝑥)  at a noise level of 𝑝% = 1% are presented in Figure 8, 

illustrating how noise affects the reconstruction's accuracy and stability. A similar result can be seen 

in [4, Fig. 4b]. 
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Figure 8. Comparison of the exact solution (31) and the numerical solution (24) 𝑓(𝑥), with noisy 

data at 𝑝% = 1% and 𝑀 = 𝑁 =80. 

 

     Finally, to stabilize the solution, we have used zeroth-order Tikhonov regularization, as seen in 

(30). After testing a range of values for the regularization parameter 𝜆 = {5 × 10−4, 10−4, 5 ×10−3, 

10−3, …, 100}, the norm error (35) was utilized to identify the optimal value \lambda.  Our findings 

demonstrate that 𝜆= 3 × 10−5 is the ideal choice, as demonstrated in Figures 9 and 10, where the 

error is minimized. However, [4, Fig. 5b] shows a different value of 𝜆. This likely stems from 

differences in method, parameter selection, or numerical implementation. 

  

 

 

 

  

 

 

 

Figure 9. The error  ‖ 𝑓𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑓𝑒𝑥𝑎𝑐𝑡 ‖ is presented as a function of 𝜆 for 𝑀 = 𝑁 = 80 and noise 

level 𝑝% = 1%. 
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Figure 10. A comparison is made between the exact solution𝑓(𝑥) (31), and the numerical solution 

(30) obtained for 𝑀 = 𝑁 = 80 with a noise level of 𝑝% = 1% for 𝜆 ∈ {1 × 10−4 ,3 × 10−5, 5 ×
10−5}. 

 

Problem 3:  Using the same boundary condition (33) with an extra condition: 

                           𝑢𝑥(0, 𝑡) = 𝑞0 (𝑡) = 𝜋,          𝑡 ∈ [0,1]                                                                           (38) 

 

Following the same procedure as in Problems 1 and 2, we have determined 𝑣𝑥(0, 𝑡), as illustrated in 

Figure 11, where the numerical results for 𝑣𝑥(0, 𝑡) computed under boundary condition (33) and 

initial condition (32) using the FDM (11)-(16) with 𝑀 = 𝑁 = {20, 40, 80}. A similar outcome, 

matching [5, Fig. 1a], is observed when comparing it to existing research results.  

 

 

 

 

 

Figure 11. The numerical results for 𝑣𝑥(0, 𝑡) using the FDM with 𝑀 = 𝑁 = [20,40,80], for Problem 

3. 

     After that compute the numerical solution of 𝑓(𝑥) by (24) under the addition condition (38) as (21) 

and using FDM (17) and (18) with zero addition and boundary condition at 𝑀 = 𝑁 = {20, 40, 80}. 

Figure 12 demonstrate excellent agreement between the numerical and exact solutions of 𝑓(𝑥) (the 

noise-free results (𝜖 = 0), thereby confirming the accuracy and reliability of the FDM. It is confirmed 
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that the shape shown in [5, Fig. 3a] matches our Figure 12. We mainly used the FDM, while [5] 

combined the separation of variables with their method. 

 

 

 

 

 

 

 

Figure 12. The exact solution (31) of 𝑓(𝑥) is compared with the numerical solution (24) for 𝑀 = 𝑁 

= {20,40,80}, for Problem 3. 

 

    In order to verify stability, we have introduced noise into the additional condition (38) as shown in 

(27). A result similar to Figure 8 from Problem 2 has been noted and is not shown.  Using (30) to 

stabilize the solution, we evaluated several choices of λ and chose the one that minimized the norm 

error (35),  𝜆 = 1 × 10−6 is the optimum value, as Figures 13 and 14 illustrate. The difference in λ 

between [5, Fig. 6a] and this one illustrates the application of the FDM in contrast to the variable 

separation in [5] for the second part (inverse part). 

  

 

  

 

 

 

Figure 13. As a function of λ the accuracy error ‖ 𝑓𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑓𝑒𝑥𝑎𝑐𝑡 ‖ for 𝑀 = 𝑁 = 80 and noise 

level 𝑝% = 1% is obtained after applying the Tikhonov regularization approach, for Problem 3. 
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Figure 14. The exact and numerical solution for 𝑓(𝑥) at 𝑀 = 𝑁 = 80 with a noise level of 𝑝% = 1% 

for 𝜆 , for Problem 3. 

  

Problem 4:   𝑢(1, 𝑡) = 𝑝𝐿(𝑡) = 𝑡 +
𝑡2

2
 ,                     𝑢𝑥(0, 𝑡) = 𝑞0 (𝑡) = 𝜋,       𝑡 ∈ [0,1]             (39)   

                      𝑢(0, 𝑡) = 𝑝0(𝑡) = 𝑡 +
𝑡2

2
,                𝑡 ∈ [0,1]                                                                   (40)   

Using the FDM (11)-(16) with 𝑀 = 𝑁 = {20,40,80}, the numerical results for 𝑣(0, 𝑡), presented in 

Figure 15, were obtained under the initial condition (32) and boundary condition (39). [5, Fig. 1b] 

shows a similar result.  

  

 

  

 

Figure 15. The numerical results for 𝑣(0, 𝑡) using the FDM with 𝑀 = 𝑁 = {20,40,80}, for Problem 

4. 

     A similar pattern is observed in [5, Fig. 3b], which closely resembles our Figure 16, confirming 

the consistency between the two approaches (i.e. FDM and separation variable), where Figure 16 

compares the numerical solution of 𝑓(𝑥) derived from equation (24) for Problem 4 with the exact 

solution provided by equation (31).  

mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive


Article  
JOURNAL OF UNIVERSITY OF BABYLON 

For Pure and Applied Sciences (JUBPAS)  
Vol.  33 ; No.4  | 2025  

 

Page | 356 

 

in
fo

@
jo

u
rn

al
o

fb
ab

yl
o

n
.c

o
m

   
|  

 ju
b

@
it

n
e

t.
u

o
b

ab
yl

o
n

.e
d

u
.iq

 | 
w

w
w

.jo
u

rn
al

o
fb

ab
yl

o
n

.c
o

m
   

   
   

   
   

IS
S

N
: 2

31
2-

8
13

5 
 | 

 P
ri

n
t 

IS
S

N
: 

19
9

2-
0

6
52

 

ــم
ج

جلــة 
ــــ

امعة ب
ـ

ل للعلــ
ـابــ

ــــــ
ص

وم ال
ـــ

رفــة 
ط

والت
ــ

بيقي
ــ

 ة
ــم

ج
جلــة 

ـــــ
امعة بـ

ــ
ل للعلـ

ـابــ
ـ

ص
وم ال

ـــ
ط

رفــة والت
ــ

بيقي
ــ

 ة
ـم

ج
جلــة 

ـــ
امعة بـ
ـ

ل للعلـ
ـابــ

ــ
ص

وم ال
ـ

ط
رفــة والت

ـــــــ
بيقي

ــ
 ة

 

 

  

      

  

 

 

 

 

  

 

 

Figure 16. The numerical solution (24) for 𝑀 = 𝑁 = {20,40,80} is compared with the exact solution 

(31) of 𝑓(𝑥), for Problem 4. 

For the noise term, a result similar to Figure 8, as observed in Problems 2 and 3, has been seen and 

is therefore not included here. Regarding stability, we have followed the same steps as in Problems 

1–3, but with a different boundary condition (39) and an additional condition (40). The optimal λ has 

been identified as λ = 2 × 10⁻⁴, as shown in Figures 17 and 18. Additionally, different λ are illustrated 

in [5, Fig. 6b]. 

  

 

 

 

 

 

 

  

 

 

Figure 17. After applying the Tikhonov regularization strategy, the accuracy error ‖ 𝑓𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 −
𝑓𝑒𝑥𝑎𝑐𝑡 ‖  for 𝑀 = 𝑁 = 80 and noise level 𝑝% = 1% is computed as a function of λ, for Problem 4. 
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Figure 18. The exact solution 𝑓(𝑥) (31) is compared with the numerical solution (30) at 𝑀 = 𝑁 = 

80 with 𝑝% = 1%. The results are presented for 𝜆 ∈ {5 × 10⁻⁶, 2 × 10⁻⁵, 2 × 10⁻⁴}, for Problem 4. 

 

Problem 5 and 6: Boundary conditions (39) from Problem 4 and (36) from Problem 2 have been 

applied to Problems 5 and 6, respectively. 

 

                         𝑢(𝑥, 𝑇 = 1) = 𝑢𝑇(𝑥) =
3

2
+ 𝑠𝑖𝑛 (𝜋𝑥),             𝑥 ∈ [0,1].                                            (41) 

 

The equations (11)-(16) of the FDM, combined with input data (32) and the boundary conditions (39) 

for Problem 5 and (36) for Problem 6, have been used to get 𝑣𝑇(𝑥)  in Figure 19 a and Figure 19b 

for 𝑀 = 𝑁 = {20, 40, 20,40,80} (refer to [3],[4],[6] and [7] for additional details). In addition, [6, Fig. 

1a] for Problem 5 and [6, Fig. 1b] for Problem 6 show a similar result. 

(a)                                                                                (b) 

 

 

 

 

 

 

 

Figure 19. The numerical results for 𝑣𝑇(𝑥) using the FDM with 𝑀 = 𝑁 = {20,40,80}, (a) for 

Problem 5, (b) for Problem 6. 
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 Next, for 𝑀 = 𝑁 = {20,40,80}, we calculate the force 𝑓(𝑥). The numerical results from equation (24) 

using the FDM (17)-(18), with zero initial and boundary conditions and input data (41) as in (23) 

(such that (39) for Problem 5; (36) for Problem 6), are compared to the exact solution (31) for both 

Problems 5 and 6 in Figure 20, because of their similarities one figure shows 𝑓(𝑥) for both problems 

5 and 6. Our Figure 20 corresponds closely to the results presented in [6, Fig. 6a] for Problem 5 and 

[6, Fig. 6b] for Problem 6.  The separation of variables method is employed in [6], whereas our 

approach relies on the finite difference method (FDM). To evaluate the stability of the reconstructed 

force, noise 𝑝% = 1% has been added to the input data (41), as shown in (29). Since the oscillations 

observed in the image are similar to those seen in Problems 2-4, they have not been included here. 

 

 

 

Figure 20: The exact solution (31) for 𝑓(𝑥) is compared with the numerical solution (24) with 𝑀 = 

𝑁 = {20,40,80}, for Problems 5 and 6. 

 

Numerous values of 𝜆 have been tested to find the optimal value for stability in equation (30). These 

values include 𝜆 ∈ {10⁻⁷, 5×10⁻⁷, 10⁻⁶, 3×10⁻⁶, 10⁻⁵, 4×10⁻⁵, …, and 10⁰}. The minimal norm error 

(35) has been evaluated for each problem. For Problem 5, as shown in Figures 21 and 22, 𝜆 = 8×10⁻⁴ 

has produced the most accurate result; for Problem 6, 𝜆 = 2×10⁻⁴ has produced the best result, with 

𝑓(𝑥) closely matching the exact solution, as shown in Figures 21 and 22.   
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(a)                                                                                       (b) 

 

 

 

 

 

 

 

Figure 21: The accuracy error ‖ 𝑓𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑓𝑒𝑥𝑎𝑐𝑡‖ after applying the Tikhonov regularization 

technique for 𝑀 = 𝑁 = 80 and 𝑝% = 1%, (a) for Problem 5; (b) for Problem 6. 

 

(a)                                                                                     (b) 

 

 

 

  

 

 

 

Figure 22: The exact solution (31) for 𝑓(𝑥) is compared with the numerical solution (30) for 𝑁=𝑀 

= 80 and 𝑝% = 1%, and various regularization parameters (a) 𝜆 ∈ {1 × 10−3 ,8 × 10−4, 9 × 10−4}, 

using for Problem 5, (b) 𝜆 ∈ {1 × 10⁻⁴, 2 × 10⁻⁴, 6 × 10⁻⁵} have compared with the exact solution 

(31) for 𝑓(𝑥), for Problem 6. 

 

 

 

 

 

  

  

  

  

  

  

  

mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive


Article  
JOURNAL OF UNIVERSITY OF BABYLON 

For Pure and Applied Sciences (JUBPAS)  
Vol.  33 ; No.4  | 2025  

 

Page | 360 

 

in
fo

@
jo

u
rn

al
o

fb
ab

yl
o

n
.c

o
m

   
|  

 ju
b

@
it

n
e

t.
u

o
b

ab
yl

o
n

.e
d

u
.iq

 | 
w

w
w

.jo
u

rn
al

o
fb

ab
yl

o
n

.c
o

m
   

   
   

   
   

IS
S

N
: 2

31
2-

8
13

5 
 | 

 P
ri

n
t 

IS
S

N
: 

19
9

2-
0

6
52

 

ــم
ج

جلــة 
ــــ

امعة ب
ـ

ل للعلــ
ـابــ

ــــــ
ص

وم ال
ـــ

رفــة 
ط

والت
ــ

بيقي
ــ

 ة
ــم

ج
جلــة 

ـــــ
امعة بـ

ــ
ل للعلـ

ـابــ
ـ

ص
وم ال

ـــ
ط

رفــة والت
ــ

بيقي
ــ

 ة
ـم

ج
جلــة 

ـــ
امعة بـ
ـ

ل للعلـ
ـابــ

ــ
ص

وم ال
ـ

ط
رفــة والت

ـــــــ
بيقي

ــ
 ة

 

4. CONCLUSION  
This study divided the non-homogeneous PDE into two parts: the direct problem and the inverse 

problem, both of which were solved using the Finite Difference Method (FDM). In addition, this 

research also showed that the finite difference method effectively solves homogeneous and non-

homogeneous partial differential equations under various conditions, providing accurate, stable 

results. Meanwhile, investigated six problems, each presenting different boundary conditions and 

additional data.   Introducing even a small amount of noise into the supplementary data renders the 

resulting force unstable, indicating that the problem was ill-posed. To overcome this issue, the 

Tikhonov regularization method employed, with the regularization parameter selected by minimize 

the norm error. The non-homogeneous term was originally considered as a single function, 𝑓(𝑥), but 

future research will expand it to include the form ℎ(𝑥, 𝑡)𝑓(𝑥) + 𝑔(𝑡). 
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 خلاصة
متجانسة من الدرجة الثانية إلى جزء متجانس وجزء غير متجانس. تُقدم الأبحاث في هذه الدراسة، نُحلل معادلة تفاضلية جزئية غير : مقدمة

 السابقة حول وجود وتفرد الحلول لكلا القسمين أساسًا رياضيًا واضحًا.
وط حدودية نستخدم طريقة الفروق المحدودة لحل كل ٍّ من المكونات المتجانسة وغير المتجانسة عدديًا. وقد أُخذت في الاعتبار شر : طرق العمل

ية، مختلفة، بما في ذلك شروط ديريتشليت ونيومان والشروط المختلطة، وكل منها يتطلب معلومات تكميلية محددة. لتقييم استقرار الحلول العدد
 نُدخل مستويات ضوضاء مختلفة ونُطبق تنظيم تيخونوف لتثبيت النتائج.

عالية النهج المُقترح. تُشير النتائج إلى أن طريقة الفروق المحدودة تُعطي حلولًا دقيقة في ظل : نُقدم العديد من الأمثلة العددية لتقييم فستنتاجاتالا
 مجموعة من الشروط الحدودية، وأن تنظيم تيخونوف يُعزز الاستقرار بشكل فعال في البيئات الصاخبة.

جمع بين تنظيم تيخونوف وتقدير الفروق المحدودة، تُرسي هذه تُثبت النتائج العددية متانة وموثوقية الطريقة المُقترحة. من خلال الالخلاصة: 
 الدراسة إطارًا فعالًا لحل المعادلات التفاضلية الجزئية غير المتجانسة من الدرجة الثانية في ظل ظروف حدودية متنوعة.

 
 تفاضلية جزئية من الدرجة الثانية.المسألة العكسية والمباشرة؛ طريقة الفروق المحدودة؛ التنظيم؛ معادلة الكلمات المفتاحية: 
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