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ABSTRACT

Background:
This study presents a useful new framework that uses Bernstein polynomials to improve a spectral

collocation technique for numerically solving Fredholm integro-differential equations of fractional orders
with variable coefficients and multi-time constant delay (FIFDEs-Delays) under boundary conditions.
Materials and Methods:

The approximate solutions are assumed to be in the form of the truncated Bernstein polynomial series. This
novel approach is based on the use of a matrix technique to convert the display equation with conditions into
an algebraic linear system of equations with unknown Bernstein coefficients.

Results:

This approach improves the accuracy of the solutions found while simultaneously simplifying the problem.
The solution of this system determines the coefficients of the assumed solution. In addition, the integral
operators employed in this technique were quantitatively evaluated using the Clenshaw-Curtis formula.
Conclusion:

we provide specific examples to showcase the accuracy of the method, and we employ the least-squares
error methodology to minimize error terms within the given domain. Ultimately, the most common
application suggested for the numerical approaches is implemented in a Python program.

Key words:

Fredholm integral equations, fractional derivative, constant delay types, Bernstein polynomial, Caputo
derivative, matrix technique, standard collocation points.
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1. INTRODUCTION
Fractional calculus (FC) is the branch of calculus that allows operations such as deriving a function
to 1/2 orders by extending the derivative of a function to non-integer order. The term fractional”
is used to describe this kind of derivative [1]. The fractional calculus may be considered an old but
inventive subject that has been explored to the current day, starting with the different conjectures
of Leibniz (1695, 1697) and L. Euler (1730). Leibniz proposed the idea of generalizing the concept
of derivative, which is defined as d™y/dx™ = D™y(x), to non-integer order (m), namely to the
order 1/2, in his conversation with Bernoulli, L’Hopital, and Wallis. Eulerbegan by pointing out
that his Gamma Function provided a meaning for non-integers in the result of the power function’s
derivative computation. The fact that fractional calculus may be thought of as a superset of integer-
order calculus is one of its main benefits. Therefore, fractional calculus may be able to achieve
things that integer-order calculus cannot. See [1-4] for further information on the historical
evolution of fractional calculus. Because of its many applications in different scientific fields,
fractional calculus (integral and derivative) has recently attracted significant attention in the past
few decades. These days, a fractional integral and derivative are required to characterize a
viscoelastic process. Polymer physics, thermodynamics, corrosion electrochemistry, optics,
electrical networks, biophysics, and the behavior of viscoplastic materials are among the other
fields in which FC has found utility in engineering, physics, finance, and hydrology (see [2], [3],
[5], [6], [7]). The derivatives of some unknown functions at this moment rely on the values of the
functions at earlier times in a significant family of functional differential equations known as delay
differential equations (DDEs). One of the reasons for their significance is that, if the independent
variable represents time, they explain processes with “after-effects” or time lag. Consequently, it
goes without saying that delay differential equations have several uses in the fields of biology,
physics, engineering, mechanics, and economics, particularly in the theory of automatic control
[8]. In reality, nevertheless, these functional differential equations appear in a wide range of
mathematical modeling domains, such as chemical kinetics [9], epidemiology, population
dynamics ([10]), metal cutting, lasers, traffic models [11], control systems [12], etc. We
specifically mention Bellman and Cooke [13], Hale [14], Driver [15], and El’sgol’ts and Norkin
[16] from the several works that now outline the application areas for DDEs. Furthermore, there is
a lot of interest in integro-fractional differential equations (IFDEs) for both the Volterra and
Fredholm types in a variety of application fields, such as engineering, physical, and biological
problems (see [17-21]). In this area, Volterra, Fredholm, and mixed Volterra-Fredholm integro-
differential equations are acknowledged as important equation types. As in (see [1], [3], [22-26]),
several analytical techniques have been devised to solve particular instances of these equations.
However, in many situations, it can be quite difficult to discover precise analytical solutions for
fractional differential and integral equations. Approximate methods have therefore become more
significant since they provide workable answers to this problem and yield trustworthy results.

The solutions of integral and integro-differential equations with integer orders can be
approximated using a variety of techniques. These techniques include weighted residual methods
[27], Legendre polynomial approaches [28], the collocation method [29], and Bernstein
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polynomials (see [30], [31]). These methods offer useful strategies for handling the complexity of
these equations and finding approximations of solutions. The techniques for solving integral and
integro-differential equations can be modified for the solution of integro-fractional differential
equations.

In this article, the aims to solve linear Fredholm integro-fractional differential equations of
constants delay type (FIFDEs-Delays) with variable coefficients, use the Bernstein polynomial for
how to solve Equation (1.1) with boundary and historical conditions (1.2), foralla < x < b..

SDLY() + ) o) DSy (x = 1) + po(y( — 7o)
£=1

m b
=f(x)+ ) A | ki (x,t) y(t —t/)dt, a<x<b (1.1)
2| o

Together with boundary conditions and historical functions:

Boundary conditions Historical functions
u-1
D {90y @ + hepy P} =8y ik =01, u =1, y(@) = ¢(x) € €+ a,b]
p=0

Where u = max{w”, w§: £ = T:n} with historical property : for all, x € [@, a] such that @ =
a —max{r,7; : j = 0:mand £ = 0:n} where y(x) is the unknown function which is the
solution of equation (1.1), the functions ki:SXR — R, (S={(x,t):a<x<t<bh}),j=
0,12,..,m and f,p,:[a,b] = R; forall? =0,1,2,..,n continuous functions. In addition
a, ERYfor all wf—-1<p<owf0f=[p; 0f—1<a,<wf,of=][a,] for all £=
1,2, ...,nwith property B> 0,a, > a,_;>->a; >0 and positive constant time-lags
(delay), 7/, 7o for all j =0,1,2,..,mand ¢ = 0,1,2,...,n, whilem € Z* U {0} and n € Z. This
paper presents the generalized Bernstein approach for the solutions of FIFDEs-Delays equation
(1.1). The residual error estimate, collocation mesh points, for the problem and the technique will
also be provided. Moreover, we obtain an adjusted approximate solution of equation (1.1) with
(1.2) in the reduced generalized Bernstein series form.

This study’s structure is categorized as follows: A summary of generalized Bernstein
polynomials, derivatives, fractional integrals, and other features required for this investigation is
provided in Section 2. Section 3 introduces the problem statement and the approximation technique
is expressed using a decent approach, Section 4 presents a few solved numerical instances. In
Section 5, we provide a succinct conclusion.
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2. PRELIMINARIES AND NOTATIONS

The fundamental principles and characteristics of the fractional calculus that will be utilized
throughout this study are introduced in this part. We direct those interested to Podlubny in [1]
and Kilbas et al. and Miller et al. (see [2] and [4]), respectively, for more details.

2.1. Basic Definitions and Lemmas:

Definitions 2.1. Every real-valued function, including y defined on [a, b], is contained in the
defined space C, [a,b], y € R. If a real number r> y exists and y € C[a, b], then y(x) can be
expressed as (x — a)"§(x). If and only if y™ € C,[a,b],n € Ny, it is in the space C][a, b]
(see [32], [33]).

Definitions 2.2. For a function y € C,[a, b],y = —1, the Reimann-Liouville fractional integral

operator a/f of order # > 0 is defined by (see [1], [33])

1 (* B
JE y(x) = @L("—ﬂ’g y®dt , >0
y(x) , ﬁ =0

Hence a]f , has a semi-group property, that is for all @, § = 0, on the closed interval [a, b]:

(2.1)

JEJEy) = JEy() = JE JEv) (22)

And g — RL operator for y-power function is:

by = — I D s
JE (= @) =g s (2:3)

Definition 2.3. The following is the definition of the Caputo fractional derivative of order g > 0
of y(x) € C™[a, b],n € N (see [1], [33].[34]) :

n=g _ (n) _
. YyM(x) n—-1<pB<n
ol y() =" iy ) (24)
dxm ! l? =n

Forall ¢;,c, € Rand u,v € C* (I),n = [B],I = [a, b]. The B-Caputo fractional derivative
satisfies the property of linearity, that is:

ng (cru(x) + cv(x)) = clng u(x) + cngf v(x), x€I (2.5)
Also, the B-Caputo fractional derivative for any constant A € R, is negligible, i.e, ng A=0.
Furthermore, the basic relation between B-RL integral operator (ng ) and the S-Caputo

differential operator (ng) is left inverse while not the right, so expressed in the following
formulas, m = [B] :

D JEu(x) = u(x) (2.6)
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m-—1 (k)
Sfuw=Y “Daay, x>0 @7

k!
k=0

Definition 2.4. The following is the definition of the general (N + 1)-Bernstein polynomials

B, n(x) of degree N when x € [a, b] (see [35], [36]):

— 1 T N-1 —
Br,N(x)_m( ) x=a)y (b—x)"" forall r=04,...N  (28)

In a specific instance, [a, b] = [0, 1] is expressed as

B, ny(x) = (1;]) )" (1—=x)N" forall r=0,1,..,N (2.9)

Equation (2.8) ’s expression can be rewrite using the binomial expansion to

N i-r
By (x) = >, Eb‘i)a)i M@= e-a (2.10)

By the binomial property, It can be entered into the form

N .

N EDTT N g ;

B = ) o= (D)) ex-a (2.11)
L=r
The Bernstein polynomial’s first derivative can be expressed as follows:
N ( 1)i—r N .
' _ - l . _ i—1
B0 = ) o= () () OG- (212)
L=r

and the integration:

b
L BT’N(X)dX = N—+1

Lemma 2.5. The S— fractional derivative for the N** degree Bernstein polynomials in the
Caputo sense is supplied, if f € R*\N, then [36]:

8 B (-1 T> 2~ T(z+1) o
iDy By n(x) = Zz”;] a)Z ( )—F(z+1—ﬁ) (x —a)*F (2.14)

(2.13)

or, formed as

N zZ-T
DB = Y 2 (M) (D) 5,0u)

b — V4
z=[p] ( a)
{ 0 if ze{0,1,...,[8] - 1}
Where S,(x; B) =1 r(z+1) B .
m (x - a) lf z €N
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Lemma 2.6. At the boundary points the n*" derivative of the universal Bernstein polynomial of
degree r,y(x) = B, y(x), forallr = 0,1, ..., N(€ N). Formed [36]:

1. Atx=ais
Yy (a) = Z)—(;bl)_nz):! M) (2.15)
2. Atx=>b is i
( ) N (_1)2n—r—N Tl! N n
y™ () = 2 -y (n) (v" ) (2.16)

Lemma 2.7. (New) The a—fractional derivative for the Nt"* degree T— Bernstein polynomials in

the Caputo sense is supplied, if « € R*\Nand ¢ > 0.Then:
N

g8 aGc-0 =y Y 2 (N (O () % M) (217)

i=r k=0

Whel’e Mk (x, (Z) = [(k+1) K—ax ]
[(k+1-q) (x - a) lf keN and k > [a{]

Proof. The constant time delay general Bernstein polynomials of degree N defined on the
closed bounded interval [a, b], define:

B y(x—1) = m(f) ((x—a) — T)T((b —x)+ (T))N_r for r=01,..,N (2.18)
First way of prove: Then, using the binomial formula, we obtain:
(B-0+@)  =(-a-(x-a)-1)""
N-r
= (VTN e - e -0t 219)
i=0

putting equation (2.19) in to equation (2.18) we get

N-r
By(x—1 =) ﬁ O (0 G N s B R L (CE O

i=0

= r+i
-y () (T (220)

l
i=0

yield,

N ((x —a)— T)i
Bntc— =) 0 () () g @2
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apply the binomial theorem to ((x —a)— r)i and putting in equation (2.21), obtain (2.22) after
some simple manlpulatlons

rN(x—r)—ZE( e (N gmg@e-o™ e

i=r k=0
Apply the a—Caputo fractional derivative for both sides of the equation (2.22) we obtain:
N
i 1 .
Df Brn(x—1)= ) Z( D (1) () (o) gy (608 G = )
i=r k=0

Consequently, listed in:

N i
a itk—r N 3 [ (T)
DB —1) = ) > DT (V) (1) () g g MiosCs )
i=r k=0
{ 0 if i—-ke{01,.. [a]—-1}
Where M;_;, (x; @) =1{ r(i-k+1) _ Nimk-a g i .
Mikti-a) (x —a) if i—keNandi—kz=|[a]

Second way of prove: As k' moves from i to 0, k moves from 0 to i, therefore this may be
restated by replacing k' = i — k -k =1i—-k"

Bmcx—ﬂ—zy D (M) (), L) g - o

i=r k'=

Perhaps we could revise

Bae-0=3 Y o= (N (O)( ) St )

i=r k=0
We obtain the following by taking the Caputo fractional derivative on both sides of equation

(2.23):
N i .
oz B0 = ) 3 0 (V) () (L) 208 e

i=r k=0

Thus,

CDEB, p(x — ) _ZZ( pekr (MY (E )(i_ik)%Mk(x;a)

0 if ke{01,..,[a]l -1}

Where M, (x; a) = { I(k+1) ea
F(k+1—a)( - a) lf keN and k = [a]

which completes the proof.
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2.2. The Clenshaw-Curtis Quadrature Formula:

This subsection defines the R-Cleanshaw-Curtis quadrature rule, which is based on the extreme
Chebyshev zeros in the closed bounded interval [a, b]. The following relation will be used to
demonstrate the expansion of the integrand using Chebyshev polynomials (see [36],[37]):

b R "
—a
I= f g()dt = —— W g(¢?), forall d=01,.,R.  (2.24)
a d=0
The terms with the prefixes d = 0 and d = R are to be halved, as indicated by the double
prime sign Y.  on the summation. The following is the definition of ¢;, which are R—shifted

Chebyshev collocation points:

b—a b+a T

(R) _ (R) (R) _

=P+ —— &P =costdp)

also,
4 Q 17 d 1
T [ -
W = EZ : Vq COS (%) and vg={1-¢? o a-even , QEZ",REL".
q=0 0 Lf q - Odd

3.PROPOSED METHOD

In this section, we attempt to use generalized Bernstein polynomials to solve Fredholm integro-
fractional differential equations of constant delay types with variable coefficients(FIFDEs-
Delays). First, the form is the ideal method for estimating the solution of equation (1.1) under the
boundary conditions (1.2) for this purpose.

N
y() = yu() = ) G Bu() (3D
r=0

For every r, the coordinate C, are unknown constant coefficients, while the coordinate functions
B, y(x) are Bernstein polynomials on any closed bounded interval [a, b].
Equation (3.1) and using historical functions in (1.2) with a fundamental understanding of the
delays definition, then for any delays constant 7, > 0 obtain the following

ox—r1,) if x—1.<a

yx—t.)=yyx—1.)= (3.2)

N
ZCT B,y(x—1,) if x—1.>a
r=0

Solve Fredholm integral part in equation (1.1) for any fixed points x and applying the
Cleanshow-Curtis quadrature formula (2.24). yields

EDEY() + ) pex) DY (x = 70) + po(¥)y(x = 7o)
£=1

R
= f(0) + iaf [b 2 - Z k(2 £”) (1 - )
j=0 d=0
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Once all yyand y have been substituted as in equations (3.1 and 3.2), respectively, we obtain:
N n px—1,) if x—1,<a
N
C.SDPp + Z cp
Z ratx r,N(x) p{’(x)a x ¥ ZCTBTN(x_Tf) if xX—T,>a
r=0 =1 — !
p(x—10) if x—19<a
N

_|_

pO(x) * z Cr Br’N(x - To) lf X — TO > a

r=0

Where Ry (x; C) is error reminder function at any fixed points x. After applying the lemmas (2.5
and 2.7 ) to above equation with equation (2.22) we obtain:

N N (=)=
zcr{zzm(b_a)z ™) s.x ﬁ)} Zm(X)

r=0
DS p(x —1,) if x—1,<a
Al N 2i—k-r i— . .
Z Z kzo( 1)(19 k_ ag?)) : (]ZI) (;) (i _l k) My (x;ap) if x—1,>a
= | p(x—10) if x—1,<a
+po(x) * Z(:)Cr ;kzo (—1();+f—;)(iTo)k (12[) (;) (;{) (x — a)i—k if x—1,>a
= f(x)
m r R
+b;azljlz kJ(x'téR))
j=0 d=0
{ go(téR) _ T]i") if P < aV
* k; C, ; 2. ((—bl)_“;k)ir I:I) (;) (llc) () (t(R) a)! k if tt(iR) T],_k > a)‘
R 0) (3.4)
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The error function involved, Ry(x; C) is dependent on the point x and the selection of the
constant coefficients C = [C,, C;, ..., Cy]. Now the equation (3.4) can be written as:

N
Ry(::0) = ) G (1) = F() (3.5)
r=0

Where 1,.(x) and F (x) are defined for fixed any point x € [a, b], here we have n + 1 constant
time delays t =7y, 74,...,T, Of We have m + 1 constant time delays 7 =,75,77, ... , Tm
respectively. Thus, we have n + 2 basic parts which construct ¥,.(x) and F(x) as follows:

( lpf’ (x) ifallt ’ssatisfies (x—1)<a
1(x)  if onet ’ssatisfies (x —T) > a and other satisfies < a

I . , s 3 e~
B (x) = 4 r.(x) if towt ’ssatisfies (x —1) > a and other satisfies < a (3.6)

;”(x) if n—1t ’ssatisfies (x — 1) > a and other satisfies < a

W (x) if allT s satisfies (x —T) > a

and
( Flo(x)  if allt 'ssatisfies (x—1)<a
Fh(x) if onet ’ssatisfies (x —t) > a and other satisfies < a
2 . ) . . _ . . <
Fx) = | F .(x) if towt ’ssatisfies (x —1) > a and other satisfies < a 3.7)

FI(x) if n—1 'ssatisfies (x — ) > a and other satisfies < a
\FInt1(x) if allt s satisfies (x — 1) > a
On the other hand, let £be any non negative integer number which takes the values
{0,1,...,n — 1} and {vy,v4,...,v.} also takes the values from the positive integer set

m
{0,1,...,n} . while, the set {dj};n_o takes all values starting from 0 to R that the points {téf)}
- i=o

satisfies the inequality AL t® _ 1) <a ,and also {d7)" takes the all values starting
j=0 [\ "¢; j 7Jj=0

m
from 0 to R that the points {tfff)} satisfies the inequality AjZ, {(tgf) — rj‘) > a}. We observe
7 7j=0 J

that the following symbols indicate
=0 {(tgj) — 1) < a} = {(tgj) — TS) <aA (tgf) - T{) <al (tgj) —15) <
a A At — ) < af
as well,
;r;o{(tg]? —)>a) ={eP - >an P - >an -1 >
a - A (t((;;;? —Tm) > a}.
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Additionally, define § as follows:

1
6(6)={§ if 6=00rR.
1 if 0.w.
Consequently, if all of constant delay time () is < a. That is

N zZ-T
e =Y 2 (N () s,

ISSN: 2312-8135 | Print ISSN: 1992-0652

S (0~ "
=0 @
N i (NY (i (83 ik
*Z k=0( e ( l) (r) (k) b — a) (te — o) (38)
with .
Fr) = 1)+ 1, Y (@)W by (115) 0 (£ ~17) ~ papx — 7o)
j=0 d; =
=Y P DI -1)  (39) 5
£=1 g
and o
[[ovs ] 2
P (x) _§_
C DT Ny (2 3
& ](b—a)z (z)(r) 5206 B) é
b—ax 3
- 1) S(@W® k; (x,t® =
> ]Z(; J; (d)wWy:" k; (x tq ) :
N Ny iy iy (@) ik :
i £, k=0( D ( i ) (r> (k) b - ) (té’j) - a) %
( N . \ —
po<x>z;<_nf+k—r (’L.V) () (b“o) G- :
if vo=0 =T . 5
4 n Z p"(x)zz( 1)2i-k= r l [ k) ((b”) ;_ M (x; ap) >(3.1@
L ={v, 5.V} i=r k 0 | ke
if vwr0 ) pg(x)ZZ( v (MO ((b")l ; Mxa) | 2
\ £={vg,v1...V} i=r k=0 J %
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with

Flgioivl s ] x)
b m
a (R) R) (R) *
=) +— Z%’Z‘Y(dj)waj k("td )‘/’(d J')
j=0 dj
n

(. ¢ p )

| if vog=0; - z Pe(x)gDy p(x —14) |
+{ P=10%{v,v5...v;} . } (3.11)

Lif v #0; —po(X)(x — 7o) — pe()SD p(x — 7 )J

£=1,0#{vg,V1,V2,.,Vr}
and if all of constant delay time (7 ) is > a. That is

§ = g;?” M) s.cp

07
B S
S S OO -
i k=0 i/ \r/\k/ (b —a)' \'%
Sy S () ) e
i3S o (O (- e

with
Flni(x) = f(x) + —Z z s(d)w,l” k; (x tg;)) ® (tff) ) (313)

The main points here are how to find the coefficients C,. (r = 0,1,...,N) of yy(x) in equation
(3.1), such that coefficients C, (r = 0,1,...,N) of) so yy(x) that Ry(x; C) is the Residual
Sum of Squares (RSS) is minimized. We now wish to minimize of residual, i.e, make Ry (x; C)
vanishes as possible as at selecting points, say x = x,,. From equation (3.5) we get :

N
Ry(xi 0) = | €t () = F ()
r=0

2

2271 5 =12,..,N + 1 sowe get

2(N+1)’

by using Newten-cotes point [38], let x = x,, where x,, =
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N+1/ N 2
RuGi O = ) | D G (1) —Fx) | (14)
p=1 \r=0

After some simple manipulation, rewrite the equation (3.14) in the matrix form as :

oC=F (3.15)
where
Vo (x1) V1(x1) Yo (xq) o Py(xg) Co
P = 1/)0(.962) 1.[)1(’952) Y2 (.xz) l/hv(xz) C= 6:1 '
Yo(xns1) Y1lxmer) Yo2(xme) - Yn(xgser) (N+1)x(N+1) Cn (N+1)x1
F(x,)
F= F(ffz)

F(xl\_/+1) (N+1)x1
According to the boundary conditions, they can be expressed as simply as follows:
u—-1

Z{gkpy(p)(a) + ey @ (b)) = 9 sk =01,..,u—1 (3.16)
p=0

by using lemma 2.6 can be substituted into equation (3.16) to produce the following expression:

N
Z Cr [Qer] = Yy foreach k=0,1,.., u—1 (3.17)
r=0

where
o dr dr
= ;{gkp G Bv@|  th s Bat)| | @as)
in general, the matrix conditions form became :
Qoo Qo1 Qon Co
G, =| G oo =% ,
Qu-1y0 Q-1 Qa—owd 4y i Cnd vy
Do
N
-1l (1)
where
o dr d°
= pZO {90 a7 B |+l Bond| _} o 319)
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In matrix form, this gives

Q,.1C=V (3.20)
The result of adding the last rows (3.20) to (3.15) is a new matrix:

GC=W (3.21)
where

@ F
G = W = ]
Ziu-—l vV

The constant coefficients C, in equation (3.21) can be found by storing the matrix G, computing
GTG and GTW, and then using the LU-factorization approach or any numerical computations
methods to solve: [GTG ]C = [GTW ].

The values C, 's in equation (3.1) are thus substituted to obtain the approximate solution for
higher order fractional linear FIFDEs with constant multi-time Retarded Delay with variable
coefficients equation (1.1).

The Algorithm (ADBM):

We summarize the procedures of the proposed Bernstein collocation method for approximate
the solution of FIFDEs-Delays multi-time in the following stages:
Step 1. Set u = max{w”, w¥: £ =1:n} where w? = [B], 0¥ = [a,].

Step 2. Set the Newten-cotes points, x,, = %, where p =1,2,..,N + 1.

Step 3. For each x = x,,:
a. For the Bernstein polynomial at fixed point, evaluate ¥, (x) by going over all the
fundamental components as in equation (3.6), and then use equations (3.8, 3.10, and 3.12)
for cases whereall r = 0,1,...,N.
b. After going over all the fundamental components in equation (3.7), compute F(x) for
each case using equations (3.9, 3.11, and 3.13).
Step 4. Equation 3.15 is used to construct the matrices @ and F.
Step 5. Using equation (3.20), the boundary condition matrices ,_, and V are constructed.
Step 6. The matrix G and W, which describe the linear system (3.21), are constructed using
steps (4 and 5).
Step 7. In order to determine constant coefficients C,.(r = 0,1,...,N), the LU-factorization
technique is applied to construct the system in step 5 after multiplying both sides by G7, as
defined in equation (3.21).
Step 8. The approximate solution yy (x) of y(x) can be obtained by substituting C,-’s in
equation (3.1), with B, y (x).

Page | 376

ISSN: 2312-8135 | Print ISSN: 1992-0652

info@journalofbabylon.com | jub@itnet.uobabylon.edu.iq | www.journalofbabylon.com


mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

JOURNAL OF UNIVERSITY OFBABYLON

Aﬂlclﬂ For Dure and Applied Seiences (JUBPAS) Vol. 33 ;No.4 | 2025

Ty D T ey S Ty S D T P ey 6

| A

1

(o € yper

vé‘\v

TSy S Y T

4. TESTING EXAMPLES

The numerical section uses the L, error norm to verify the correctness and efficacy of the
proposed schemes. The suggested algorithm ADBM produces numerical results that are
compared, and a Python program is used to generate both the numerical and graphical results.

Test Example 4.1. Consider a linear FIFDEs-Delays constant multi-time delay containing
various fractional orders on the closed bounded interval [0, 1] with variable coefficients:

ED%%y(x) — % EDY6y(x — 0.1) + cos(x) y(x — 0.43) = f(x)

1
+f [6(xt)y(t — 0.5) + (x2 + t2) y(t — 0.62) —e~**Dy(t — 0.3)]dt  (4.1)
0

Where
e r(4) 1 T4 0.3 I'(3) 1.97 T(2)
Flx) =2 (2) x01 _ 21, 1 24 03 1.4 _ 04 _ cos(x) x3 +
r(1.1) r(3.1) 3T(3.4) 3 I'(24) 3 I(14)
129 49483 14453 157 219507 104119 2043 _
= cos(x) x? — x? + cox(x)x ——x+——cos(x) —————e ¥ +
100 62500 10000 40 1000000 250000 1000

7613 e_(x+1)
1000

with boundary condition 1y(0) — 0y(1) = 1 and the historical function ¢(x) = 1 + 2x —
x3. While the exact solution is y(x) = 1 + x(2 — x?).

Here, based on the given example:

Assume the approximate solution has the following form, while the numerical approximation
numbers in the approach and general Clenshaw-Curtis formula, respectively, are N = 3
and R = 18:

3
y(x) = y3(x) = z CrBy3(x) forallr =0,1,2,3
r=0
Then the Newten-cotes points x,,, such that x,, = 2’1—_1,1) =1,2,..,N+1 where here take
2(N+1)

N = 10 so:

x; = 0.045454545455, x, = 0.136363636364, x30.227272727273, Xq4 =

x5 = 0.409090909091, xe = 0.5, x7 = 0.590909090909, xg=

xq = 0.772727272727, x19= 0.863636363636, x;; = 0.954545454545
The fundamental matrix for equation (3.15) given the following manner :

Page | 377

ISSN: 2312-8135 | Print ISSN: 1992-0652

babylon.edu.iq | www.journalofbabylon.com

o
0.318181818182,
0.68181818{818,

info@journalofbabylon.com | jub@


mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

JOURNAL OF UNIVERSITY OFBABYLON

Ty D T ey S Ty S D T P ey 6

| A

1

oy e

vé‘\v

TSy S Y T

A“Icle l:or Dmﬂe anA APP'ieJ Sciences <JUBPH5) Vol 885 No 12025

b =

[ —2.1356657438950 1.9322320513566 0.20043285036204 0.020263839863690
—1.5723482025663  0.81358765858055  0.49892116512337 0.047053536120602
—1.3588492175817  0.16863598860945 0.63106260253410  0.11294704784978
—1.1705702605709 —0.37801122294281 0.64971447171118  0.21563759204135
—1.0169073310821 —0.81808545627682 0.55618975709560  0.35472124126400
—0.19517586762326 —0.98982012776041 0.36345220950811  0.53016621950332
—0.33376483780295 —1.0885842960374 0.090513866832708 0.74422327191852
—0.46221583145738 —1.1547349187714 —0.27765137473397 0.99952296508770
—0.58705057578179 —1.1683912017417 —0.75553500885278  1.2974919168082
—0.71527028673478 —1.1104287723212  —1.3548629517277 1.6380932302396

L—0.85402231411338 —0.96349998528176 —2.0837155374467 2.0196281725443 144

1 1.59249171228282

1.04136315846234
0.619967420820720

0.145976142753862
—0.373969972201051

0.0626098659853248
—0.449425444917605

—1.03667881993776
—1.70349753627017

—2.45244308143859

- —3.28400160623916 -

11X1

, With Bernstein parameter terms: C =

C;
Cs 4x1

For the boundary conditions the fundamental matrices for equation (3.20) we get:

[GTG;6™W] =
14.232883626545
—0.96732113644008
—0.17682671948448
—5.3559237889929

Q- =[1 0 0 O0]and V =1[1].
solving the system above by any numerical methods (here using LU-factorization procedure), by
procedure that [GT G; GTW], the approximate solutions y; (x) are obtained.

—0.9673211364400
12.260734641454
4.4562372347466

—8.0452009048009

—0.1768267194844
4.4562372347466
8.3845493686193

—6.9892799268755

—5.3559237889929 ;
—8.0452009048009 ;
—6.9892799268755 ;

10.467431741170 ;

Thus we obtaining the Bernstein parameters C,, = [C,,C;,C,, C5 ], See table(1).

Table 1. Bernstein parameters for (y;(x)) while N = 3and R = 18

C, R = 18
Co 1.000003476961
C 1.666532788504
C, 2.332648626121
Cs 1.998546923461
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After putting all C,’s in the Bernstein approximation equation (3.1) for applying the Clenshaw-
Curtis quadrature formula (2.24) for R = 18 we obtain:
y{F=18) (%) = 1.000003476961(1 — x)® + 1.666532788504(3x) (1 — x)?
+ 2.332648626121(3x%)(1 — x) + 1.998546923461x3

Using the same step as before, we can get approximation solution to the problem for N = 3,
N = 10withR = 19and R = 20, respectively. After that, we run the general python program

created for this purpose:

Table 2. Bernstein parameters for (y;(x)) while N = 3 and R = 19, 20 respectively

C, R = 19 R = 20
Co 1.000000136263 0.999999998725
C, 1.666668704122 1.666666679188
C, 2.333350474952 2.333333361985
Cs 2.000040353488 2.000000040551

So, the approximate solution for R = 19 become:
yiF=19(x) = 1.000000136263(1 — x)® + 1.666668704122(3x)(1 — x)?
+ 2.333350474952(3x2)(1 — x) + 2.000040353488x3
The approximate solution for R = 20 become:
yiF=20 (1) = 0.999999998725(1 — x)3 + 1.666666679188(3x)(1 — x)?
+ 2.333333361985(3x2)(1 — x) + 2.000000040551x3
Table (3) compares the exact solution y(x) and the approximate solution y;(x). It also displays
the running times, least square errors, and residual equation values R;(x; C). The formula (3.5) is
applied for three distinct values R = (18,19, 20) respectively.
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Table 3. A comparison between the exact solution and the approximate solution

The approximate solutions y (x) with respective to integral parts R

X Exact R =18 R =19 R =20
0 1 1.00000347696 1.00000013626 0.999999998725
0.1 1.199 1.19895006214 1.19900109761 1.19900000293
0.2 1.392 1.39187301449 1.39200282057 1.39200000723
0.3 1.573 1.5727735096 1.57300527457 1.57300001159
0.4 1.736 1.73565272308 1.73600842902 1.73600001598
0.5 1.875 1.87451183054 1.87501225337 1.87500002035
0.6 1.984 1.98335200757 1.98401671704 1.98400002466
0.7 2.057 2.05617442977 2.05702178946 2.05700002888
0.8 2.088 2.08698027275 2.08802744005 2.08800003296
0.9 2.071 2.06977071212 2.07103363825 2.07100003686
1 2 1.99854692346 2.00004035349 2.00000004055
L.S.E 6.192723962682916 4.525326179507544 6.3977047977615004
x 1076 x 1077 x 10715
R; 1.28608853760722 6.36107340448893 1.52104183320445
=L.S.E, x 1079 x 10713 x 10717
R.Time 0.5465397834777832 0.6033868789672852 0.656287431716919
/Sec
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Figure 1. Exact and approximate solution of Test Example 4.1

The absolute error values for a numerical method used with various values of R = (18,19, 20)
are displayed in the table(4). The absolute error typically drops as R rises, indicating that the
approach gets more precise. This demonstrates the connection between the precision of the
findings and the parameter R.

Table 4. Absolute error of the method with respective different input R

Absolute error

X Exact R =18 R =19 R =20

0 1 3.47696 X 107® 1.36263 x 1077  1.275x 10~°
0.1 1.199 4.99379x 10~5  1.09761 x 10°®  2.927x 10~°
0.2 1.392 1.2698x 10~* 2.82057 x 107¢  7.230x 107°
0.3 1.573 2.264x 107* 5.27457 x 107¢ 1.1594x 1078
0.4 1736  3.4727x107* 8.42902 x 10™® 1.5981x 1078
0.5 1.875 4.8816x 10~* 1.22534 x 107®  2.0349x 10~8
0.6 1984  6.4799x 10~* 1.6717 x 1075  2.4661x 10~8
0.7 2.057 8.2557x 107* 2.17895x 10~>  2.8877x 1078
0.8 2.088 1.01973x 1073 2.74401x 107>  3.2956x 10~8
09 2.071 1.22929%x 107®  3.36383 x 107> 3.6861x 1078
1 2 1.45308% 1073 4.0353%x 10~5 4.0551x 1078
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Figure 2. Absolute error of Test Example 4.1

06

Apply the same stages as in the algorithm ADBM and running the Python program which are
written for this purpose, for N = 3 and N = 6and N = 8with R = 20 we obtain the
Bernstein approximate solution for y, (x) with respective to N. we listed all values with error in
table (5).

Table 5. A comparison between the exact solution and the approximate solution

ISSN: 2312-8135 | Print ISSN: 1992-0652

The approximate solutions and absolute error for R = 20 with respective different input N

Py D T T ey S Ty S D T P ey 6

X Exa V3(x) absolute error Vo (x) absolute error Vs(x) absolute error
ct V3(x) Ve (x) Vs (x)
0 1 0.9999999987 1.275 x 1077 0.999999999¢ 7.5 x 101  0.999999999¢ 7.2 x 101!
0.1 1.19¢ 1.199000002¢ 2.927 x 10~° 1.199000004( 4.004 x 10~° 1.199000003¢ 3.967 x 10~°
], 0.2 1.39: 1.392000007z 7.23 x 10™° 1.392000008Z= 8.391 x 10~° 1.392000008z 8.246 x 10~°
0.3 1.57: 1.573000011°F 1.1594 1.573000012¢ 1.2945 1.573000012¢ 1.2623
3 x 1078 x 1078 x 1078
0.4 1.73¢ 1.736000015¢ 1.5981 1.736000017¢ 1.7566 1.7360000171 1.7139
b x 1078 x 1078 x 1078
f.. 0.5 1.87! 1.875000020:= 2.0349 1.8750000221 2.2116 1.875000021¢ 2.1642
[;' x 1078 x 1078 x 1078
b. 0.6 1.98¢ 1.984000024¢ 2.4661 1.984000026¢% 2.6524 1.984000025¢ 2.5955
™ x 1078 x 1078 x 1078
| 3.0.7 2.05% 2.057000028¢ 2.8877 2.0570000307 3.0755 2.057000030C 3.0053
= x 1078 x 1078 x 108
:1[:0.8 2.08¢ 2.088000032¢ 3.2956 2.088000034¢ 3.4841 2.088000034( 3.4048
f" x 1078 x 1078 x 1078
[ 0.9 2.07: 2.071000036¢ 3.6861 2.071000038¢ 3.8895 2.071000038C 3.8042
f x 1078 x 1078 x 1078
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Figure 3. Exact and approximate solution of Test Example 4.1

le—8

1 2 2.000000040%  4.0551 2.0000000431  4.3135 2.0000000421  4.2197
' x 1078 x 1078 x 1078
- L.S.E 63977047977 7.288638801¢ 6.969090392¢
w X 10715 x 10715 x 10715
{RN 1.521041833: 1.695926882¢ 1.6005283547
b=L.S.E, x107V x 10718 x 10719
E R.Time 0.6562874317 1.759639739¢ 3.1995050907
/sec
r
[
% s e N
[ T
E n: S 0gg 0700 07 07w 04y ; o
.F

v .

T

Coy S

vé‘\v

STy ST VD I

—e— Absolute error N
—< Absolute error N=
4] = Absolute error N

[N}
@@ w

oo 02
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Figure 4. Absolute error of Test Example 4.1

Test Example 4.2. Consider the following (FIFDEs-Delays) in which 0 < a,8 < 1 thatis:
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1
¢D27y(x) + cosh(x) D26y (x — 0.1) — = D}C) Sy(x —0.2) + = D24y (x — 0.3)
X

+ %y(x —0.5)

1 1
=f(x) + f (—tsin(x))y(t — 0.7)dt + f (t+x?)y(t—09)dt (4.2)

Where

IS 33 _ 5@ 03 rs) 34 r@ 24 r@
f( )= r(4. 3) 2 r(1.3) X7 + cos(x) [r(4 4) x 04555 r(. 4) +0.06 r(2. 4)

r@ r(s) r@ 25 '@ r@
2.004 5 ra. 4) ] [F(4 5) —0. 8[‘(3 5) +0.24 555 r(. 5) — 2032575 ra. 5) ] +
r(s) r4) 26 I‘(3) re) 506 eXx* e Xx3  eXx? _
[F(46) - L 2r(3 6) +0.547055 r(2. 6) — 210875 r(1. 6) ] T 6 3 T 4
9181 _, 5 17 X 94291666666667 . 5012
xX°——e*x+— sin(x) —

10000 12 9 ¢ 2500000000000000 20000

With boundary conditions 1y(0) + 0y(1) = 0, while the historical function is @(x) = x* —
2x. where y(x) = x(x3 — 2) is the exact solution.

Take N = 4and N = 7 and (R = 10,15, 25) respectively . Assume the approximate solution
has the following form (numerical approximation number in approach, general Clenshaw-Curtis
formula):

y(x) = yu(x) = Z Cr By 4(x) forallr =0,1,...,4

After executing a Python program to get the constant coefficients C,,we can obtain an
approximate solution to our problem by using the same procedure as in Test Example 4.1.
Table 6. Bernstein parameters for (y,(x)) while N = 4 and R = 10,15, 25
respectively

C, R = 10 R = 15 R = 25
C, —1.525656939160 —5.597377912818 1.123689858556
x 1073 x 107° x 10716
C;, —4.998453337048 —4.999340339434 —5.000000000000
x 1071 x 1071 x 1071
C, —1.000240669159 —1.000104953236 —1.000000000000
C; —1.500733498773 —1.500326259683 —1.500000000000
C, —1.001679607642 —1.000743519947 —1.00000000000

So the approximate solution for R = (10, 15, 25) respectively we get :

yF=10) (4) = —1.525656939160 x 1075(1 — x)* — 4.998453337048 x 10~ (4x)(1 — x)3
—1.000240669159(6x2)(1 — x)? — 1.500733498773(4x3)(1 — x)
—1.001679607642 x*
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yF=19)(x) = —5.597377912818 x 1076(1 — x)* — 4.999340339434 X 10~ (4x)(1 — x)3

— 1.000104953236(6x2)(1 — x)? — 1.500326259683 (4x3)(1 — x)
— 1.000743519947x*

Y829 () = 1.123689858556 x 10716(1 — x)* — 5.0 x 1072 (4x) (1 — x)?

—1.0(6x*)(1 —x)? - 1.5(4x*)(1 — x) — 1.0x*

Furthermore, after running the programs, table (7) and the approximation expression, the table(7)
compares the exact solution y(x) and the approximate solution y,(x) . It also displays the
running times, least square errors, and residual equation values R,(x; C). The formula (3.5) is
applied for three distinct values of R. the following approximate formulas are obtaine

Table 7. A comparison between the exact solution and the approximate solution

The approximate solutions y,(x) with respective to integral parts R

X Exact R =10 R=15 R =25
0 0 —1.52565693916 —5.59737791282 1.12368985856
x 107> x 107° x 10716
0.0526316 —0.105255484534 —0.105244096275 —0.105249936675 —0.105255484534
0.105263 —0.210403542023 —0.210382750426 —0.210394273417 —0.210403542023
0.157895 —0.315167931492 —-0.315153568813 —0.315161787751 —0.315167931492
0.210526 —0.419088251318 —0.419094892247 —0.419091561363 —0.419088251318
0.263158 —0.521519939227 —-0.521561052551 —0.521538577471 —0.521519939227
0.315789 —0.621634272297 —0.621722372566 —0.621673720828 —0.621634272297
0.368421 —0.718418366955 —0.718565166147 —0.718483777722 —0.718418366955
0.421053 —-0.810675178981 —0.810891738167 —0.810771435977 —0.810675178981
0.473684 —0.897023503503 —0.897320384513 —0.897155284948 —0.897023503503
0.526316 —0.975897975 —0.97628539209 —0.976069815529 —0.975897975
0.578947 —1.045549067303 —1.04603703882 —1.04576542014 —1.0455490673
0.631579 —1.104043093592 —1.10464159363 —1.10430839276 —1.10404309359
0.684211 —1.149262206398 —1.14998131648 —1.14958092886 —1.1492622064
0.736842 —1.178904397603 —1.17975445833 —1.17928112549 —1.1789043976
0.789474 —1.190483498438 —1.19147526117 —1.1909229812 —1.19048349844
0.842105 —1.181329179488 —1.182473958 —1.1818363961 —1.18132917949
0.894737 —1.148586950683 —1.14989677283 —1.14916717183 —1.14858695068
0.947368 —1.089218161309 —1.0907059207 —1.08987701154 —1.08921816131
1 -1 —1.00167960764 —1.00074351995 -1
L.S.E 1.119747143491067¢ 2.197215804430571F 3.085062829263179
x 107> x 1076 x 10730
R, = L.E.Sy 8.22667352497636 1.47764708280376 2.97085518356102
x 1078 x 1078 x 10730
R.Time/Sec 0.616353750228881¢ 0.618492841720581 0.7572336196899414
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The absolute error values for a numerical method used with various values of R = 10, 15,25
are displayed in the table(8). The absolute error typically drops as R rises, indicating that the
approach becomes more precise. This demonstrates the connection between the precision of the

findings and the parameter R.

Table 8. Absolute error of the method with respective different input R

Absolute error

X Exact R=10 R=15 R =25

0 0 1.52566 x 1075 5.59737 x 107 1.12369 x 10716
0.0526316 —0.105255484534 1.13883 x 10™° 5.54785 x 107® 4.21191 x 10~4
0.105263 —0.210403542023 2.07916 x 107> 9.26860 x 107® 4.17999 x 10~ 14
0.157895 —0.315167931492 1.43627 x 107> 6.14374 x 10® 3.83582 x 10714
0.210526 —0.419088251318 6.64093 x 10~° 3.31004 x 10~® 3.88578 x 10~1°
0.263158 —0.521519939227 4.11133 x 10~° 1.86382 x 10> 1.43219 x 10~*
0.315789 —0.621634272297 8.81003 x 10~° 3.94485 x 10> 3.30846 x 10~1*
0.368421 —0.718418366955 1.46799 x 10~* 6.54107 x 107> 4.08562 x 10~ 14
0.421053 —0.810675178981 2.16559 x 10~* 9.62569 x 107> 3.11973 x 10714
0.473684 —0.897023503503 2.96881 x 10~* 1.31781 x 10~* 1.11022 x 10~4
0.526316 —0.975897975  3.87417 x 10™* 1.71840 x 10~* 8.21565 x 1071°
0.578947 —1.045549067303 4.87972 x 10~* 2.16352 x 10* 4.41869 x 10~ 14
0.631579 —1.104043093592 5.98500 x 10™* 2.65299 x 10~* 2.33147 x 10~4
0.684211 —1.149262206398 7.19110 x 10~* 3.18722 x 10~* 4.77396 x 10~ 4
0.736842  -1.178904397603 8.50061 x 10™* 3.76727 x 10~* 1.57874 x 1073
0.789474 —1.190483498438 9.91763 x 10™* 4.39482 x 10~* 4.71179 x 1073
0.842105 —1.181329179488 1.14478 x 10~3 5.07216 x 10~* 4.26992 x 10713
0.894737 —1.148586950683 1.30982 x 10~% 5.80221 x 10~* 3.12861 x 10713
0.947368 —1.089218161309 1.48776 x 10~3 6.58850 x 10~* 3.82361 x 10713

1 -1 1.67961 x 1073 7.43519 x 10~* 0
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Test Example 4.3. Consider the following linear fractional (FIFDEs-Delays) in which 0 <

af <1

Absolute error

-125

—+ Exact solution
—s— Approximate solution R=10

Approximate solution R=15
—— Approximate solution R=25

|
i
|
-120]

|

|
-115

|
|
-1 IP
|

-1 Q‘s

-100 —
["070 072 074 076 078 080 082084

0.00175 A

0.00150 A

0.00125 |

0.00100 +

0.00075 |

0.00050 +

0.00025 A

0.00000 A

0.0

02 04 06 08
x

10

Figure 5. Exact and approximate solution of Test Example 4.2

—&— Approximate solution R=10
--4- Approximate solution R=15
=»— Approximate solution R=25

0.0

Figure 6. Absolute error of Test Example 4.2

D25y (x) + §D2* y(x — 0.2) + sinh(x)y(x — 0.4)

where

=f<x>+f0

1 1

0
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cos(x) y(t — 0.6)dt + .[ 2(x —t)y(t — 0.8)dt

(4.3)
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2 [ —xhtos xh+0.6
flx) = z Thiis) e 02 Tt 16) + sin(x)[1 — e®0Y] — cos(x) [1 — e%* + e70¢]

h=0
—2x[1 —e%? +798] — 2708 + 1

Using a boundary condition 1y(0) + 0 y(1) = 0 and the function of history ¢(x) = 1 — €%,

where y(x) = 1 — e* is the exact solution.

Suppose that, we take M terms from part £(x):

X[ _yh+os (h+06
flx) = z Thiis) e 02 Tt 16) + sin(x)[1 — e®0Y] — cos(x) [1 — e%* + e70¢]
h=0 ' '

—2x[1—e%% +e708] — 2708 + 1
Take N = 8and N = 8and R = 22. Assume the approximate solution has the following form
(numerical approximation number in approach, general Clenshaw-Curtis formula):

8
y(x) = yg(x) = z C,B,g(x) forallr=0,1,..,8
r=0

After executing a Python program to get the constant coefficients C,,
Table 9. Bernstein parameters for (yg(x)) while N = 8and M =
4, 8,10 respectively

C, M =4 M =38 M =10
Co, —4.425507899959 1.304776482284 3.795959002425
x 10710 x 10714 x 10712
Cy —1.249999850265 —1.250000000971 —1.250000003792
x 1071 x 1071 x 1071
C, —2.678571188803 —2.678571424636 —2.678571417154
x 1071 x 1071 x 1071
Cs —4.315476242192 —4.315476185230 —4.315476177733
x 1071 x 1071 x 1071
Cy —6.196428068734 —6.196428624525 —6.196428735721
x 1071 x 1071 x 1071
Cs —8.364585055317 —8.364583216315 —8.364582870416
x 1071 x 1071 x 1071
Ce —1.087252202546 —1.087251993991 —1.087252101780
C; —1.378450634366 —1.378497110930 —1.378496618155
Cs —1.717962516236 —1.718277272478 —1.718281786193

We can obtain an approximate solution to our problem by using the same procedure as in Test
Example 4.1. The approximate solution for M = (4,8, 10) respectively we get:
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Y= = 4425507899959 x 10710(1 — x)® — 1.249999850265 X

1071(8x)(1 — x)7

— 2.678571188803 x 1071(28x2)(1 — x)° — 4.315476242192
X 1071(56x3)(1 — x)° — 6.196428068734 x 10~ (70x*)(1 — x)*

— 8.364585055317 x 1071(56x>)(1 — x)3

— 1.087252202546(28x°)(1 — x)? — 1.378450634366(8x7) (1 — x)

—1.717962516236x8

8

yM=8 — 1304776482284 x 10~14(1 — x)® — 1.250000000971 x 10~1(8x)(1 — x)’

— 2.678571424636 x 1071(28x2)(1 — x)° — 4.315476185230
x 1071(56x3)(1 — x)5 — 6.196428624525 x 10~1(70x*)(1 — x)*

— 8.364583216315 x 107 1(56x°)(1 — x)3
—1.087251993991(28x°)(1 — x)? — 1.37849711093
— 1.718277272478x®

0(8x7)(1 —x)

yM=19 = 3795959002425 x 10712(1 — x)® — 1.250000003792 x 1071 (8x) (1 — x)’
— 2.678571417154 x 1071(28x2)(1 — x)¢ — 4315476177733
x 1071(56x3)(1 — x)° — 6.196428735721 x 10~ 1(70x*) (1 — x)*

— 8.364582870416 x 1071(56x°%)(1 — x)3

—1.087252101780(28x°)(1 — x)? — 1.378496618155(8x7) (1 — x)

—1.718281786193x8

Furthermore, after running the programs, table (10) shows a comparison between the exact
solution y(x) and the approximate solution yg(x) and shows the least square errors, running
times and residual equations of the values Rg(x; C)are also included by applying formula (3.5)
for three different values M and the approximation expression, the following approximate

formulas are obtained for M = (4,8, 10):

Table 10. A comparison between the exact solution and the approximate solution

X  Exact M =4 M =8 M =10
0 0 —4.42550789996 x 1.30477648228 x 10 3.79595900243 x 10
-10

0. —-0.10517091¢ -100.105170908948 -0.105170918057 -0.105170918066

(1). —0.22140275¢ -0.221402741843 -0.22140275815 -0.221402758201

(2). —0.349858807 -0.349858724607  -0.349858807573 -0.349858807886

g. —0.491824697 -0.491824138576  -0.491824696564 -0.491824698055

g. —0.64872127( -0.648718625855 -0.648721261726 -0.648721270984

(5). —0.82211880( -0.822109384969 -0.822118753465 -0.822118800486
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6 s
0. —1.013752707 -1.01372528933 -1.0137525195 -1.01375270695 2
7 o
0. —1.22554092¢ -1.22547198959 -1.22554030616 -1.22554092516 %
8 v
0. —1.459603111 -1.45944808977 -1.45960132882 -1.45960309822 E
9 (a '
1 —1.71828182¢ 1.71796251624 -1.71827727248 -1.71828178619 1
L.S.E 1.31592219584245 2.43585838154564 1.96545936985566 oo
~
x 1077 x 10711 x 10715 E\
Rg =L.S.E, 7.70802276676131 3.57011757183415 5.66771539696522 >
x 10718 x 10727 x 10722 A

R.Time/Sec 1.76134705543518 1.768518209457397 1.798195838928222

075
—0.35

~0.40
-1.00

-0.45

10550
1 024 026 028 030 032 034

-1.50

-1.75

00 02 04 06 08 10

Figure 7. Exact and approximate solution of Test Example 4.3

Table (11) shows the absolute error values for a numerical method applied with different values
of M = 4,8,10. As M increases, the absolute error generally decreases, suggesting that the
method becomes more accurate. This highlights the relationship between the parameter M and
the precision of the results.
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Table 11. Absolute error of the method with respective different values M

X

Absolute error

Exact

M=4

M=3

M =10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
—0.1051709181
—0.2214027581
—0.3498588076
—0.4918246976
—0.6487212707
—0.8221188004

—1.013752707
—1.225540928
—1.459603111
—1.718281828

442551 x 10710
9.12795 x 10~°
1.63175 x 1078
8.29692 x 1078
5.59066 x 1077
2.64484 x 107°
9.41542 x 107°
2.74181 x 1075
6.89389 x 107>
1.55021 x 10~*
3.19312 x 10~*

1.30478 x 10~ 14
1.88477 x 10711
1.05699 x 10~ 11
3.00321 x 10712
1.07737 x 10~°
8.97463 x 107°
46926 x 1078
1.87969 x 10~
6.22329 x 1077
1.78233 x 107°
455598 x 107°

3.79596 x 10712
9.64771 x 10712
412302 x 10711
3.10297 x 10710
41373 x 10710
2.84272 x 10710
9.55909 x 10711
5.21477 x 10710
3.32947 x 10~°
1.29349 x 1078
42266 x 1078

—&— Absolute error M=4
—— Absolute error M=8
0.00030 { —#— Absolute error M=1

000025
0.00020

0.00015

Absolute error

000010

000005

0.00000

o

Figure 8. Absolute error of Test Example 4.3

5. CONCLUSIONS

In this study, under practical circumstances, Fredholm integro-fractional differential equations
(FIFDEs-Delays) of delay types with variable coefficients are solved using the Bernstein
polynomial approximation. Good results were obtained by relying solely on the computer
program that was built and included multiple examples for illustration. Additionally, tabular
forms of the running time, least square error, and least square error function y(x) were provided.

02 o4

thus the following points have been identified.

1. The good results are determined by the number of approximate parts of the integral R (the
exact solution of yy (x) if R is a large number) and the number of polynomials N that are

obtained with a suitable number of N.

0.6 08
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2. In a situation with Mittag-Leffler terms (see Test Example 4.3), the number of Mittag-
Leffler words and the selection of the aforementioned factors determine how accurate the
findings are. In order to save time, we converted the infinite Mittag-Leffler terms into
(4,8, and 10) terms.
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