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ABSTRACT 
Background: 

This study presents a useful new framework that uses Bernstein polynomials to improve a spectral 

collocation technique for numerically solving Fredholm integro-differential equations of fractional orders 

with variable coefficients and multi-time constant delay (FIFDEs-Delays) under boundary conditions.  

Materials and Methods: 

The approximate solutions are assumed to be in the form of the truncated Bernstein polynomial series. This 

novel approach is based on the use of a matrix technique to convert the display equation with conditions into 

an algebraic linear system of equations with unknown Bernstein coefficients.   

Results:  

This approach improves the accuracy of the solutions found while simultaneously simplifying the problem. 

The solution of this system determines the coefficients of the assumed solution. In addition, the integral 

operators employed in this technique were quantitatively evaluated using the Clenshaw-Curtis formula. 

Conclusion:  

we provide specific examples to showcase the accuracy of the method, and we employ the least-squares 

error methodology to minimize error terms within the given domain. Ultimately, the most common 

application suggested for the numerical approaches is implemented in a Python program. 

Key words:  

Fredholm integral equations, fractional derivative, constant delay types, Bernstein polynomial, Caputo 

derivative, matrix technique, standard collocation points. 
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1. INTRODUCTION 

Fractional calculus (FC) is the branch of calculus that allows operations such as deriving a function 

to 1/2 orders by extending the derivative of a function to non-integer order.  The term ”fractional” 

is used to describe this kind of derivative [1]. The fractional calculus may be considered an old but 

inventive subject that has been explored to the current day, starting with the different conjectures 

of Leibniz (1695, 1697) and L. Euler (1730). Leibniz proposed the idea of generalizing the concept 

of derivative, which is defined as 𝑑𝑚𝑦/𝑑𝑥𝑚  =  𝐷𝑚𝑦(𝑥), to non-integer order (𝑚), namely to the 

order 1/2, in his conversation with Bernoulli, L’Hopital, and Wallis. Eulerbegan by pointing out 

that his Gamma Function provided a meaning for non-integers in the result of the power function’s 

derivative computation. The fact that fractional calculus may be thought of as a superset of integer-

order calculus is one of its main benefits. Therefore, fractional calculus may be able to achieve 

things that integer-order calculus cannot. See [1-4] for further information on the historical 

evolution of fractional calculus. Because of its many applications in different scientific fields, 

fractional calculus (integral and derivative) has recently attracted significant attention in the past 

few decades. These days, a fractional integral and derivative are required to characterize a 

viscoelastic process. Polymer physics, thermodynamics, corrosion electrochemistry, optics, 

electrical networks, biophysics, and the behavior of viscoplastic materials are among the other 

fields in which FC has found utility in engineering, physics, finance, and hydrology (see [2], [3], 

[5], [6], [7]). The derivatives of some unknown functions at this moment rely on the values of the 

functions at earlier times in a significant family of functional differential equations known as delay 

differential equations (DDEs). One of the reasons for their significance is that, if the independent 

variable represents time, they explain processes with ”after-effects” or time lag. Consequently, it 

goes without saying that delay differential equations have several uses in the fields of biology, 

physics, engineering, mechanics, and economics, particularly in the theory of automatic control 

[8]. In reality, nevertheless, these functional differential equations appear in a wide range of 

mathematical modeling domains, such as chemical kinetics [9], epidemiology, population 

dynamics ([10]), metal cutting, lasers, traffic models [11], control systems [12], etc. We 

specifically mention Bellman and Cooke [13], Hale [14], Driver [15], and El’sgol’ts and Norkin 

[16] from the several works that now outline the application areas for DDEs. Furthermore, there is 

a lot of interest in integro-fractional differential equations (IFDEs) for both the Volterra and 

Fredholm types in a variety of application fields, such as engineering, physical, and biological 

problems (see [17-21]). In this area, Volterra, Fredholm, and mixed Volterra-Fredholm integro-

differential equations are acknowledged as important equation types. As in (see [1], [3], [22-26]), 

several analytical techniques have been devised to solve particular instances of these equations. 

However, in many situations, it can be quite difficult to discover precise analytical solutions for 

fractional differential and integral equations. Approximate methods have therefore become more 

significant since they provide workable answers to this problem and yield trustworthy results.  

         The solutions of integral and integro-differential equations with integer orders can be 

approximated using a variety of techniques. These techniques include weighted residual methods 

[27], Legendre polynomial approaches [28], the collocation method [29], and Bernstein 
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polynomials (see [30], [31]). These methods offer useful strategies for handling the complexity of 

these equations and finding approximations of solutions. The techniques for solving integral and 

integro-differential equations can be modified for the solution of integro-fractional differential 

equations. 

          In this article, the aims to solve linear Fredholm integro-fractional differential equations of 

constants delay type (FIFDEs-Delays) with variable coefficients, use the Bernstein polynomial for 

how to solve Equation (1.1) with boundary and historical conditions (1.2), for all 𝑎 ≤ 𝑥 ≤ 𝑏 . 

𝐷𝑎
𝐶

𝑥
𝛽
𝑦(𝑥) +∑𝑝ℓ(𝑥) 𝐷𝑎

𝐶
𝑥
𝛼ℓ𝑦(𝑥 − 𝜏ℓ) + 𝑝0(𝑥)𝑦(𝑥 − 𝜏0)

𝑛

ℓ=1

 

= 𝑓(𝑥) +∑𝜆𝑗 ∫𝑘𝑗 (𝑥, 𝑡) 𝑦(𝑡 − 𝜏𝑗
∗)𝑑𝑡

𝑏

𝑎

𝑚

𝑗=0

, 𝑎 ≤ 𝑥 ≤ 𝑏         (1.1) 

Together with boundary  conditions and historical functions: 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠                     𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

∑{𝑔𝑘𝜌𝑦
(𝜌)(𝑎) + ℎ𝑘𝜌𝑦

(𝜌)(𝑏)} = 𝜗𝑘   ; 𝑘 = 0,1, … , 𝜇 − 1

𝜇−1

𝜌=0

   ,       𝑦(𝑥) = 𝜑(𝑥) ∈ 𝐶𝜇−1[𝑎, 𝑏]

                                                 

    (1.2)              

     Where 𝜇 = max {𝜔𝛽 , 𝜔ℓ
𝛼: ℓ = 1: 𝑛̅̅ ̅̅ ̅}  with historical property : for all, 𝑥 ∈ [𝑎̅, 𝑎] such that 𝑎̅ =

𝑎 − max{𝜏ℓ,𝜏𝑗 
∗ ∶ 𝑗 = 0:𝑚̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 ℓ = 0: 𝑛̅̅ ̅̅ ̅} where 𝑦(𝑥) is the unknown function which is the 

solution of equation (1.1), the functions  𝑘𝑗: 𝑆 × ℝ ⟶ ℝ, (𝑆 = {(𝑥, 𝑡) ∶ 𝑎 ≤ 𝑥 < 𝑡 ≤ 𝑏}), 𝑗 =

0,1,2, … ,𝑚 and 𝑓, 𝑝ℓ ∶ [𝑎, 𝑏] ⟶ ℝ;   𝑓𝑜𝑟 𝑎𝑙𝑙 ℓ = 0,1,2, … , 𝑛 continuous functions. In addition 

𝛼ℓ ∈ ℝ
+ for all 𝜔𝛽 − 1 < 𝛽 ≤ 𝜔𝛽 , 𝜔𝛽 = ⌈𝛽⌉ ;  𝜔ℓ

𝛼 − 1 < 𝛼ℓ ≤ 𝜔ℓ
𝛼, 𝜔ℓ

𝛼 = ⌈𝛼ℓ⌉ for all ℓ =

1,2, … , 𝑛 with property 𝛽 > 0, 𝛼𝑛 > 𝛼𝑛−1 > ⋯ > 𝛼1 > 0  and positive constant time-lags 

(delay), 𝜏𝑗
∗, 𝜏ℓ for all  𝑗 = 0,1,2, … ,𝑚 and ℓ = 0,1,2, … , 𝑛, while 𝑚 ∈ ℤ+ ∪ {0}  and 𝑛 ∈ ℤ+. This 

paper presents the generalized Bernstein approach for the solutions of FIFDEs-Delays equation 

(1.1). The residual error estimate, collocation mesh points, for the problem and the technique will 

also be provided. Moreover, we obtain an adjusted approximate solution of equation (1.1) with 

(1.2) in the reduced generalized Bernstein series form. 

      This study’s structure is categorized as follows: A summary of generalized Bernstein 

polynomials, derivatives, fractional integrals, and other features required for this investigation is 

provided in Section 2. Section 3 introduces the problem statement and the approximation technique 

is expressed using a decent approach, Section 4 presents a few solved numerical instances. In 

Section 5, we provide a succinct conclusion. 
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2. PRELIMINARIES AND NOTATIONS  

 The fundamental principles and characteristics of the fractional calculus that will be utilized 

throughout this study are introduced in this part. We direct those interested to Podlubny in [1] 

and Kilbas et al. and Miller et al. (see [2] and [4]), respectively, for more details.  

 

2.1. Basic Definitions and Lemmas: 

 

Definitions 2.1.  Every real-valued function, including 𝑦 defined on [𝑎, 𝑏], is contained in the 

defined space 𝐶𝛾[𝑎, 𝑏], 𝛾 ∈ ℝ. If a real number r>  𝛾 exists and 𝑦̂ ∈  𝐶[𝑎, 𝑏], then 𝑦(𝑥) can be 

expressed as (𝑥 −  𝑎)𝑟𝑦̂(𝑥). If and only if 𝑦(𝑛) ∈  𝐶𝛾[𝑎, 𝑏], 𝑛 ∈  ℕ0, it is in the space 𝐶𝛾
𝑛[𝑎, 𝑏] 

(see [32], [33]).  

Definitions 2.2. For a function 𝑦 ∈ 𝐶𝛾[𝑎, 𝑏], 𝛾 ≥ −1, the Reimann-Liouville fractional integral 

operator 𝐽𝑥
𝛽
 𝑎  of order 𝛽 ≥ 0 is defined by (see [1], [33]) 

𝐽𝑥
𝛽
 𝑦(𝑥)𝑎 = {

1

𝛤(𝛽)
 ∫ (𝑥 − 𝑡)𝛽−1𝑦(𝑡)𝑑𝑡   ,      𝛽 > 0

𝑥

𝑎

          𝑦(𝑥)                                   ,    𝛽 = 0  

            (2.1) 

Hence 𝐽𝑥
𝛽
 𝑎 , has a semi-group property, that is for all 𝛼, 𝛽 ≥ 0, on the closed interval [𝑎, 𝑏]: 

  

𝐽𝑥
𝛽
 𝑎 𝐽𝑥

𝛼𝑦(𝑥) = 𝐽𝑥
𝛽+𝛼

𝑦(𝑥) = 𝐽𝑥
𝛼  𝑎 𝐽𝑥

𝛽
𝑦(𝑥) 𝑎          (2.2)  𝑎  𝑎  

And 𝛽 − 𝑅𝐿 operator for 𝛾-power function is:  

  

𝐽𝑥
𝛽
(𝑥 − 𝑎)𝛾 =

Γ(𝛾 + 1)

Γ(𝛾 + 𝛽 + 1)
(𝑥 − 𝑎)𝛾+𝛽 𝑎                          (2.3) 

  

Definition 2.3. The following is the definition of the Caputo fractional derivative of order 𝛽 ≥ 0 

of 𝑦(𝑥) ∈ 𝐶−1
𝑛 [𝑎, 𝑏], 𝑛 ∈ ℕ (see [1], [33],[34]) : 

 𝐷𝑥
𝛽
 𝑦(𝑥) = {

𝐽𝑥
𝑛−𝛽

 𝑎 𝑦(𝑛)(𝑥)      , 𝑛 − 1 < 𝛽 < 𝑛
𝑑𝑛𝑦(𝑥)

𝑑𝑥𝑛
             ,        𝛽 = 𝑛

       (2.4)𝑎
𝐶  

   For all 𝑐1, 𝑐2 ∈ ℝ and 𝑢, 𝑣 ∈ 𝐶−1
𝑛 (𝐼), 𝑛 = ⌈𝛽⌉, 𝐼 = [𝑎, 𝑏]. The 𝛽-Caputo fractional derivative 

satisfies the property of linearity, that is: 

                 𝐷𝑥
𝛽
 (𝑐1𝑢(𝑥) + 𝑐2𝑎

𝐶 𝑣(𝑥)) = 𝑐1 𝐷𝑥
𝛽
 𝑎

𝐶 𝑢(𝑥) + 𝑐2 𝐷𝑥
𝛽
 𝑎

𝐶 𝑣(𝑥),       𝑥 ∈ 𝐼.              (2.5)        

  Also, the 𝛽-Caputo fractional derivative for any constant 𝐴 ∈ ℝ, is negligible, i.e, 𝐷𝑥
𝛽
 𝑎

𝐶  𝐴 = 0. 

Furthermore, the basic relation between 𝛽-𝑅𝐿  integral operator ( 𝐷𝑥
𝛽
 𝑎

𝐶 ) and the 𝛽-Caputo 

differential operator ( 𝐷𝑥
𝛽
 𝑎

𝐶 ) is left inverse while not the right, so expressed in the following 

formulas, 𝑚 = ⌈𝛽⌉ : 

  

𝐷𝑥
𝛽
 𝑎

𝐶 𝐽𝑥
𝛽
𝑢(𝑥) = 𝑢(𝑥) 𝑎                     ( 2.6) 
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𝐽𝑥
𝛽
𝐷𝑥
𝛽
 𝑢(𝑥) = ∑

𝑢(𝑘)(𝑥)

𝑘!

𝑚−1

𝑘=0

 𝑎
𝐶  𝑎 (𝑥 − 𝑎)𝑘,        𝑥 > 𝑎.        (2.7) 

Definition 2.4. The following is the definition of the general (𝑁 + 1)-Bernstein polynomials 

𝐵𝑟,𝑁(𝑥) of degree 𝑁 when 𝑥 ∈ [𝑎, 𝑏] (see [35], [36]): 

𝐵𝑟,𝑁(𝑥) =
1

(𝑏 − 𝑎)𝑁
(
𝑁
𝑟
) (𝑥 − 𝑎)𝑟(𝑏 − 𝑥)𝑁−𝑟  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑟 = 0,1, … ,𝑁         (2.8) 

In a specific instance, [𝑎, 𝑏]  =  [0, 1] is expressed as  

 

𝐵𝑟,𝑁(𝑥) = (
𝑁
𝑟
) (𝑥)𝑟(1 − 𝑥)𝑁−𝑟  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑟 = 0,1, … ,𝑁         (2.9) 

Equation (2.8) ’s expression can be rewrite using the binomial expansion to 

 

𝐵𝑟,𝑁(𝑥) =∑
(−1)𝑖−𝑟

(𝑏 − 𝑎)𝑖
(
𝑁
𝑟
) (
𝑁 − 𝑟
𝑖 − 𝑟

)

𝑁

𝑖=𝑟

(𝑥 − 𝑎)𝑖               (2.10) 

By the binomial property, It can be entered into the form 

                                           

𝐵𝑟,𝑁(𝑥) =∑
(−1)𝑖−𝑟

(𝑏 − 𝑎)𝑖
(
𝑁
𝑖
) (
𝑖
𝑟
)

𝑁

𝑖=𝑟

(𝑥 − 𝑎)𝑖                     (2.11) 

The Bernstein polynomial’s first derivative can be expressed as follows: 

                                           

𝐵𝑟,𝑁
′ (𝑥) =∑

(−1)𝑖−𝑟

(𝑏 − 𝑎)𝑖
(
𝑁
𝑖
) (
𝑖
𝑟
)

𝑁

𝑖=𝑟

(𝑖)(𝑥 − 𝑎)𝑖−1                      (2.12) 

and the integration: 

  

∫ 𝐵𝑟,𝑁(𝑥)𝑑𝑥 =
𝑏 − 𝑎

𝑁 + 1
                (2.13)

𝑏

𝑎

 

Lemma 2.5. The 𝛽− fractional derivative for the N𝑡ℎ degree Bernstein polynomials in the 

Caputo sense is supplied, if 𝛽 ∈ ℝ+\ℕ, then [36]: 

𝐷𝑥
𝛽
𝐵𝑟,𝑁(𝑥) = ∑

(−1)(𝑧−𝑟)

(𝑏 − 𝑎)𝑧

𝑁

𝑧=⌈𝛽⌉

 (
𝑁
𝑧
) (
𝑧
𝑟
)

Γ(𝑧 + 1)

Γ(𝑧 + 1 − 𝛽)
(𝑥 − 𝑎)𝑧−𝛽            (2.14)𝑎

𝐶  

or, formed as 

𝐷𝑥
𝛽
𝐵𝑟,𝑁(𝑥) = ∑

(−1)𝑧−𝑟

(𝑏 − 𝑎)𝑧

𝑁

𝑧=⌈𝛽⌉

 (
𝑁
𝑧
) (
𝑧
𝑟
) 𝑆𝑧(𝑥; 𝛽)            𝑎

𝐶  

Where 𝑆𝑧(𝑥; 𝛽) = {
0 𝑖𝑓 𝑧𝜖{0,1, … , ⌈𝛽⌉ − 1}

Γ(𝑧+1)

Γ(𝑧+1−𝛽)
(𝑥 − 𝑎)𝑧−𝛽 𝑖𝑓 𝑧 ∈ ℕ

 . 
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Lemma 2.6. At the boundary points the 𝑛𝑡ℎ derivative of the universal Bernstein polynomial of 

degree 𝑟, 𝑦(𝑥) = 𝐵𝑟,𝑁(𝑥), for all 𝑟 = 0,1, … ,𝑁(∈ ℕ). Formed [36]: 

1.  At 𝑥 = 𝑎  is  

                                                  

𝑦(𝑛)(𝑎) =∑
(−1)𝑛−𝑟 𝑛!

(𝑏 − 𝑎)𝑛
(
𝑁
𝑛
) (
𝑛
𝑟
)

𝑛

𝑟=0

                (2.15) 

2. At 𝑥 = 𝑏  is 

                                            

𝑦(𝑛)(𝑏) = ∑
(−1)2𝑛−𝑟−𝑁 𝑛!

(𝑏 − 𝑎)𝑛
(
𝑁
𝑛
) (

𝑛
𝑁 − 𝑟

)

𝑁

𝑟=𝑁−𝑛

             (2.16) 

              

Lemma 2.7. (New) The 𝛼−fractional derivative for the 𝑁𝑡ℎ degree 𝜏− Bernstein polynomials in 

the Caputo sense is supplied, if 𝛼 ∈  ℝ+\ℕ and 𝜏 ≥  0.Then:   

𝐷𝑥
𝛼𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)2𝑖−𝑘−𝑟 (

𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)
(𝜏)𝑖−𝑘

(𝑏 − 𝑎)𝑖

𝑖

𝑘=0

𝑁

𝑖=𝑟

 𝑎
𝐶 𝑀𝑘(𝑥; 𝛼)            (2.17) 

Where 𝑀𝑘(𝑥; 𝛼) = {
0 𝑖𝑓 𝑘 ∈ {0,1, … , ⌈𝛼⌉ − 1}

Γ(𝑘+1)

Γ(𝑘+1−𝛼)
(𝑥 − 𝑎)𝑘−𝛼 𝑖𝑓 𝑘 ∈ ℕ  𝑎𝑛𝑑 𝑘 ≥ ⌈𝛼⌉

             

            Proof. The constant time delay general Bernstein polynomials of degree 𝑁 defined on the 

closed bounded interval [𝑎, 𝑏], define: 

𝐵𝑟,𝑁(𝑥 − 𝜏) =
1

(𝑏 − 𝑎)𝑁
(
𝑁
𝑟
) ((𝑥 − 𝑎) − 𝜏)𝑟((𝑏 − 𝑥) + (𝜏))

𝑁−𝑟
 𝑓𝑜𝑟  𝑟 = 0,1, … ,𝑁         (2.18) 

First way of prove: Then, using the binomial formula, we obtain: 

((𝑏 − 𝑥) + (𝜏))
𝑁−𝑟

= ((𝑏 − 𝑎) − ((𝑥 − 𝑎) − 𝜏))
𝑁−𝑟

= ∑(−1)𝑁−𝑟+1
𝑁−𝑟

𝑖=0

(
𝑁 − 𝑟
𝑖

) (𝑏 − 𝑎)𝑁−𝑟−𝑖((𝑥 − 𝑎) − 𝜏)𝑖           (2.19) 

putting equation (2.19) in to equation (2.18) we get 

𝐵𝑟,𝑁(𝑥 − 𝜏) = ∑
1

(𝑏 − 𝑎)𝑁
(−1)𝑖 (

𝑁
𝑟
) (
𝑁 − 𝑟
𝑖

)

𝑁−𝑟

𝑖=0

((𝑥 − 𝑎) − 𝜏)𝑖  (𝑏 − 𝑎)𝑁−𝑟−𝑖 ((𝑥 − 𝑎) − 𝜏)𝑟

= ∑(−1)𝑖 (
𝑁
𝑟
) (
𝑁 − 𝑟
𝑖

)
((𝑥 − 𝑎) − 𝜏)

𝑟+𝑖

(𝑏 − 𝑎)𝑟+𝑖

𝑁−𝑟

𝑖=0

              (2.20) 

yield, 

𝐵𝑟,𝑁(𝑥 − 𝜏) =∑(−1)𝑖−𝑟 (
𝑁
𝑟
) (
𝑁 − 𝑟
𝑖 − 𝑟

)
((𝑥 − 𝑎) − 𝜏)

𝑖

(𝑏 − 𝑎)𝑖

𝑁

𝑖=𝑟

          (2.21)      
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apply the binomial theorem to ((𝑥 − 𝑎) − 𝜏)
𝑖
 and putting in equation (2.21), obtain (2.22) after 

some simple manipulations: 

𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)𝑖+𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)

1

(𝑏 − 𝑎)𝑖
(𝜏)𝑘(𝑥 − 𝑎)𝑖−𝑘             (2.22) 

Apply the 𝛼−Caputo fractional derivative for both sides of the equation (2.22) we obtain: 

𝐷𝑥
𝛼  𝑎

𝐶 𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)𝑖+𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)

1

(𝑏 − 𝑎)𝑖
(𝜏)𝑘 𝐷𝑥

𝛼 𝑎
𝐶 (𝑥 − 𝑎)𝑖−𝑘 

Consequently, listed in: 

𝐷𝑥
𝛼𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)𝑖+𝑘−𝑟 (

𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)

(𝜏)𝑘

(𝑏 − 𝑎)𝑖

𝑖

𝑘=0

𝑁

𝑖=𝑟

 𝑎
𝐶 𝑀𝑖−𝑘(𝑥; 𝛼)  

Where 𝑀𝑖−𝑘(𝑥; 𝛼) = {
0 𝑖𝑓 𝑖 − 𝑘 ∈ {0,1, … , ⌈𝛼⌉ − 1}

Γ(𝑖−𝑘+1)

Γ(𝑖−𝑘+1−𝛼)
(𝑥 − 𝑎)𝑖−𝑘−𝛼 𝑖𝑓 𝑖 − 𝑘 ∈ ℕ  𝑎𝑛𝑑 𝑖 − 𝑘 ≥ ⌈𝛼⌉

             

        Second way of prove: As 𝑘′ moves from 𝑖 to 0, 𝑘 moves from 0 to 𝑖,  therefore this may be 

restated by replacing 𝑘′ =  𝑖 −  𝑘,→  𝑘 =  𝑖 − 𝑘′. 

𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)𝑖+𝑖−𝑘
′−𝑟

𝑖

𝑘′=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘′

)
(𝜏)𝑖−𝑘

′

(𝑏 − 𝑎)𝑖
(𝑥 − 𝑎)𝑘

′
    

Perhaps we could revise 

𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)2𝑖−𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)
(𝜏)𝑖−𝑘

(𝑏 − 𝑎)𝑖
(𝑥 − 𝑎)𝑘             (2.23) 

We obtain the following by taking the Caputo fractional derivative on both sides of equation 

(2.23): 

𝐷𝑥
𝛼  𝑎

𝐶 𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)2𝑖−𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)
(𝜏)𝑖−𝑘

(𝑏 − 𝑎)𝑖
𝐷𝑥
𝛼 𝑎

𝐶 (𝑥 − 𝑎)𝑘   

Thus, 

𝐷𝑥
𝛼𝐵𝑟,𝑁(𝑥 − 𝜏) =∑∑(−1)2𝑖−𝑘−𝑟 (

𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)
(𝜏)𝑖−𝑘

(𝑏 − 𝑎)𝑖

𝑖

𝑘=0

𝑁

𝑖=𝑟

 𝑎
𝐶 𝑀𝑘(𝑥; 𝛼)  

Where 𝑀𝑘(𝑥; 𝛼) = {
0 𝑖𝑓 𝑘 ∈ {0,1, … , ⌈𝛼⌉ − 1}

Γ(𝑘+1)

Γ(𝑘+1−𝛼)
(𝑥 − 𝑎)𝑘−𝛼 𝑖𝑓 𝑘 ∈ ℕ  𝑎𝑛𝑑 𝑘 ≥ ⌈𝛼⌉

             

which completes the proof. 
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2.2. The Clenshaw-Curtis Quadrature Formula:                                                                                                   

This subsection defines the 𝑅-Cleanshaw-Curtis quadrature rule, which is based on the extreme 

Chebyshev zeros in the closed bounded interval [𝑎, 𝑏]. The following relation will be used to  

demonstrate the expansion of the integrand using Chebyshev polynomials (see [36],[37]): 

𝐼 = ∫ 𝑔(𝑡)𝑑𝑡
𝑏

𝑎

≅
𝑏 − 𝑎

2
∑

′′

𝑊𝑑
(𝑅)

𝑅

𝑑=0

 𝑔(𝑡𝑑
(𝑅)),     𝑓𝑜𝑟 𝑎𝑙𝑙  𝑑 = 0,1, . . , 𝑅.        (2.24)    

The terms with the prefixes 𝑑 =  0 and 𝑑 =  𝑅 are to be halved, as indicated by the double 

prime sign ∑′′  on the summation. The following is the definition of 𝑡𝑖, which are 𝑅−shifted 

Chebyshev collocation points: 

𝑡𝑑
(𝑅)

=
𝑏 − 𝑎

2
𝜉𝑑
(𝑅)
+
𝑏 + 𝑎

2
,            𝜉𝑑

(𝑅)
= cos (𝑑

𝜋

𝑅
 ) 

       also, 

𝑊𝑑
(𝑅) =

4

𝑅
∑

′′

𝜈𝑞 cos (
𝑞𝑑𝜋

𝑄
) ,       𝑎𝑛𝑑     𝜈𝑞

𝑄

𝑞=0

= {

1

1 − 𝑞2
𝑖𝑓  𝑞 − 𝑒𝑣𝑒𝑛

0 𝑖𝑓 𝑞 − 𝑜𝑑𝑑

  ,    𝑄 ∈ ℤ+, 𝑅 ∈ ℤ+. 

 

3.PROPOSED METHOD 

 In this section, we attempt to use generalized Bernstein polynomials to solve Fredholm integro-

fractional differential equations of constant delay types with variable coefficients(FIFDEs-

Delays). First, the form is the ideal method for estimating the solution of equation (1.1) under the 

boundary conditions (1.2) for this purpose. 

𝑦(𝑥) ≅ 𝑦𝑁(𝑥) =∑𝐶𝑟 𝐵𝑟,𝑁(𝑥)                  (3.1)

𝑁

𝑟=0

 

For every 𝑟, the coordinate 𝐶𝑟 are unknown constant coefficients, while the coordinate functions 

𝐵𝑟,𝑁(𝑥) are Bernstein polynomials on any closed bounded interval [𝑎, 𝑏].  

Equation (3.1) and using historical functions in (1.2) with a fundamental understanding of the 

delays definition, then for any delays constant 𝜏∗  >  0 obtain the following 

𝑦(𝑥 − 𝜏∗ ) ≅ 𝑦𝑁(𝑥 − 𝜏∗ ) = {

𝜑(𝑥 − 𝜏∗ ) 𝑖𝑓 𝑥 − 𝜏∗ ≤ 𝑎

∑𝐶𝑟 𝐵𝑟,𝑁(𝑥 − 𝜏∗)

𝑁

𝑟=0

𝑖𝑓 𝑥 − 𝜏∗ > 𝑎
            (3.2) 

Solve Fredholm integral part in equation (1.1) for any fixed points 𝑥 and applying the 

Cleanshow-Curtis quadrature formula (2.24). yields 

𝐷𝑎
𝐶

𝑥
𝛽
𝑦(𝑥) +∑𝑝ℓ(𝑥) 𝐷𝑎

𝐶
𝑥
𝛼ℓ𝑦(𝑥 − 𝜏ℓ) + 𝑝0(𝑥)𝑦(𝑥 − 𝜏0)

𝑛

ℓ=1

 

= 𝑓(𝑥) +∑𝜆𝑗

𝑚

𝑗=0

[
𝑏 − 𝑎

2
 ∑

′′

𝑘𝑗(𝑥, 𝑡𝑑
(𝑅))

𝑅

𝑑=0

𝑦(𝑡𝑑
(𝑅) − 𝜏𝑗

∗)]  
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Once all 𝑦𝑁and 𝑦 have been substituted as in equations (3.1 and 3.2), respectively, we obtain: 

∑𝐶𝑟

𝑁

𝑟=0

𝐷𝑎
𝐶

𝑥
𝛽
𝐵𝑟,𝑁(𝑥) +∑𝑝ℓ(𝑥) 𝐷𝑎

𝐶
𝑥
𝛼ℓ ∗ {

𝜑(𝑥 − 𝜏ℓ ) 𝑖𝑓 𝑥 − 𝜏ℓ ≤ 𝑎

∑𝐶𝑟 𝐵𝑟,𝑁(𝑥 − 𝜏ℓ)

𝑁

𝑟=0

𝑖𝑓 𝑥 − 𝜏ℓ > 𝑎
}

𝑛

ℓ=1

 

+𝑝0(𝑥) ∗ {

𝜑(𝑥 − 𝜏0 ) 𝑖𝑓 𝑥 − 𝜏0 ≤ 𝑎

∑𝐶𝑟 𝐵𝑟,𝑁(𝑥 − 𝜏0)

𝑁

𝑟=0

𝑖𝑓 𝑥 − 𝜏0 > 𝑎
} 

= 𝑓(𝑥) +
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0
[
 
 
 
 

 ∑
′′

𝑘𝑗(𝑥, 𝑡𝑑
(𝑅)) ∗

{
 
 

 
 𝜑(𝑡𝑑

(𝑅) − 𝜏𝑗
∗) 𝑖𝑓 𝑡𝑑

(𝑅) − 𝜏𝑗
∗ ≤ 𝑎

∑𝐶𝑟 𝐵𝑟,𝑁(𝑡𝑑
(𝑅) − 𝜏𝑗

∗)

𝑁

𝑟=0

𝑖𝑓 𝑡𝑑
(𝑅) − 𝜏𝑗

∗ > 𝑎

}
 
 

 
 𝑅

𝑑=0
]
 
 
 
 

+ 𝑅𝑁(𝑥; 𝐶̅)                                                                                                                                       (3.3) 

 

Where 𝑅𝑁(𝑥; 𝐶̅) is error reminder function at any fixed points 𝑥. After applying the lemmas (2.5 

and 2.7 )  to above equation with equation (2.22) we obtain: 

 

∑𝐶𝑟 {∑
(−1)𝑧−𝑟

(𝑏 − 𝑎)𝑧

𝑁

𝑧=⌈𝛽⌉

 (
𝑁
𝑧
) (
𝑧
𝑟
) 𝑆𝑧(𝑥; 𝛽) }

𝑁

𝑟=0

+∑𝑝ℓ(𝑥)

𝑛

ℓ=1

 

∗ {

𝐷𝑎
𝐶

𝑥
𝛼ℓ𝜑(𝑥 − 𝜏ℓ ) 𝑖𝑓 𝑥 − 𝜏ℓ ≤ 𝑎

∑𝐶𝑟  ∑∑
(−1)2𝑖−𝑘−𝑟(𝜏ℓ)

𝑖−𝑘

(𝑏 − 𝑎)𝑖
(
𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)

𝑖

𝑘=0

𝑁

𝑖=𝑟

𝑀𝑘(𝑥; 𝛼ℓ)

𝑁

𝑟=0

𝑖𝑓 𝑥 − 𝜏ℓ > 𝑎
} 

+𝑝0(𝑥) ∗ {

𝜑(𝑥 − 𝜏0 ) 𝑖𝑓 𝑥 − 𝜏0 ≤ 𝑎

∑𝐶𝑟  ∑∑
(−1)𝑖+𝑘−𝑟(𝜏0)

𝑘

(𝑏 − 𝑎)𝑖

𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
) (𝑥 − 𝑎)𝑖−𝑘

𝑁

𝑟=0

𝑖𝑓 𝑥 − 𝜏0 > 𝑎
} 

= 𝑓(𝑥)

+
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0
[
 
 
 
 

 ∑
′′

𝑘𝑗(𝑥, 𝑡𝑑
(𝑅))

𝑅

𝑑=0

∗

{
 
 

 
 𝜑(𝑡𝑑

(𝑅) − 𝜏𝑗
∗) 𝑖𝑓 𝑡𝑑

(𝑅) − 𝜏𝑗
∗ ≤ 𝑎

∑𝐶𝑟  ∑∑
(−1)𝑖+𝑘−𝑟

(𝑏 − 𝑎)𝑖

𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
) (𝜏𝑗

∗)𝑘(𝑡𝑑
(𝑅) − 𝑎)𝑖−𝑘

𝑁

𝑟=0

𝑖𝑓 𝑡𝑑
(𝑅) − 𝜏𝑗

∗ > 𝑎

}
 
 

 
 

]
 
 
 
 

+ 𝑅𝑁(𝑥; 𝐶̅)                                                                                                          (3.4) 
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  The error function involved, 𝑅𝑁(𝑥; 𝐶̅)  is dependent on the point 𝑥 and the selection of the 

constant coefficients 𝐶̅ = [𝐶0, 𝐶1, … , 𝐶𝑁]. Now the equation (3.4) can be written as: 

𝑅𝑁(𝑥; 𝐶̅) =∑𝐶𝑟 𝜓𝑟

𝑁

𝑟=0

(𝑥) − 𝐹(𝑥)                        (3.5) 

Where 𝜓𝑟(𝑥) and 𝐹(𝑥) are defined for fixed any point 𝑥 ∈  [𝑎, 𝑏], here we have 𝑛 +  1 constant 

time delays 𝜏 = 𝜏0, 𝜏1, … , 𝜏𝑛 or we have 𝑚 +  1 constant time delays 𝜏 =, 𝜏0
∗, 𝜏1

∗, … , 𝜏𝑚
∗  

respectively. Thus, we have 𝑛 +  2 basic parts which construct 𝜓𝑟(𝑥) and 𝐹(𝑥) as follows: 

𝜓𝑟(𝑥) =

{
 
 
 

 
 
 𝜓𝑟

𝐼0(𝑥) 𝑖𝑓 𝑎𝑙𝑙 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  (𝑥 − 𝜏) ≤ 𝑎                                                   

𝜓𝑟
𝐼1(𝑥) 𝑖𝑓 𝑜𝑛𝑒 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (𝑥 − 𝜏) > 𝑎 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 ≤ 𝑎 

𝜓𝑟
𝐼2(𝑥) 𝑖𝑓 𝑡𝑜𝑤 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  (𝑥 − 𝜏) > 𝑎 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 ≤ 𝑎 

⋮

𝜓𝑟
𝐼𝑛(𝑥) 𝑖𝑓  𝑛 − 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (𝑥 − 𝜏) > 𝑎 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 ≤ 𝑎 

𝜓𝑟
𝐼𝑛+1(𝑥) 𝑖𝑓 𝑎𝑙𝑙 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (𝑥 − 𝜏) > 𝑎                                                      

     (3.6)             

and  

𝐹(𝑥) =

{
  
 

  
 
𝐹𝐼0(𝑥) 𝑖𝑓 𝑎𝑙𝑙 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  (𝑥 − 𝜏) ≤ 𝑎                                                  

𝐹𝐼1(𝑥) 𝑖𝑓 𝑜𝑛𝑒 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (𝑥 − 𝜏) > 𝑎 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 ≤ 𝑎

𝐹2(𝑥) 𝑖𝑓 𝑡𝑜𝑤 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  (𝑥 − 𝜏) > 𝑎 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 ≤ 𝑎

⋮
𝐹𝐼𝑛(𝑥)  𝑖𝑓  𝑛 − 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (𝑥 − 𝜏) > 𝑎 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 ≤ 𝑎 

𝐹𝐼𝑛+1(𝑥)  𝑖𝑓 𝑎𝑙𝑙 𝜏 𝑠,  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (𝑥 − 𝜏) > 𝑎                                                      

          (3.7)               

On the other hand, let ℒ be any non negative integer number which takes the values 

{0, 1, . . . , 𝑛 −  1} and {𝑣0, 𝑣1, . . . , 𝑣ℒ} also takes the values from the positive integer set 

{0, 1, . . . , 𝑛} . while, the set {𝑑𝑗}𝑗=0
𝑚

 takes all values starting from 0 to 𝑅 that the points {𝑡𝑑𝑗
(𝑅)}

𝑗=0

𝑚

 

satisfies the inequality  ⋀ {(𝑡𝑑𝑗
(𝑅) − 𝜏𝑗

∗) ≤ 𝑎}𝑚
𝑗=0  , and also {𝑑𝑗

∗}
𝑗=0

𝑚
takes the all values starting 

from 0 to 𝑅 that the points {𝑡
𝑑𝑗
∗
(𝑅)
}
𝑗=0

𝑚

satisfies the inequality ⋀ {(𝑡
𝑑𝑗
∗
(𝑅)
− 𝜏𝑗

∗) > 𝑎}𝑚
𝑗=0 . We observe 

that the following symbols indicate 

  ⋀ {(𝑡𝑑𝑗
(𝑅) − 𝜏𝑗

∗) ≤ 𝑎}𝑚
𝑗=0 = {(𝑡𝑑0

(𝑅) − 𝜏0
∗) ≤ 𝑎 ⋀  (𝑡𝑑1

(𝑅) − 𝜏1
∗) ≤ 𝑎 ⋀ (𝑡𝑑2

(𝑅) − 𝜏2
∗) ≤

𝑎  ⋀ ⋯ ⋀ (𝑡𝑑𝑚
(𝑅)
− 𝜏𝑚

∗ ) ≤ 𝑎}  

as well,  

⋀ {(𝑡
𝑑𝑗
∗
(𝑅)
− 𝜏𝑗

∗) > 𝑎}𝑚
𝑗=0  = {(𝑡𝑑0∗

(𝑅) − 𝜏0
∗) > 𝑎  ⋀  (𝑡𝑑1∗

(𝑅) − 𝜏1
∗) > 𝑎  ⋀  (𝑡𝑑2∗

(𝑅) − 𝜏2
∗) >

𝑎  ⋀ ⋯ ⋀  (𝑡𝑑𝑚∗
(𝑅) − 𝜏𝑚

∗ ) > 𝑎}.    
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Additionally, define 𝛿 as follows: 

𝛿(𝜃) = {

1

2
𝑖𝑓 𝜃 = 0 𝑜𝑟 𝑅

1 𝑖𝑓 𝑜. 𝑤.
. 

Consequently, if all of constant delay time (𝜏 ) is ≤  𝑎. That is  

𝜓𝑟
𝐼0(𝑥) = ∑

(−1)𝑧−𝑟

(𝑏 − 𝑎)𝑧

𝑁

𝑧=⌈𝛽⌉

 (
𝑁
𝑧
) (
𝑧
𝑟
) 𝑆𝑧(𝑥; 𝛽)

− [
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0

∑𝛿(𝑑𝑗
∗)𝑊

𝑑𝑗
∗
(𝑅)
 𝑘𝑗 (𝑥, 𝑡𝑑𝑗

∗
(𝑅)
)

𝑑𝑗
∗

∗∑∑(−1)𝑖+𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)
(𝜏𝑗
∗)
𝑘

(𝑏 − 𝑎)𝑖
(𝑡
𝑑𝑗
∗
(𝑅)
− 𝑎)

𝑖−𝑘

]            (3.8) 

with 

𝐹𝐼0(𝑥) = 𝑓(𝑥) +
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0

∑𝛿(𝑑𝑗)𝑊𝑑𝑗
(𝑅) 𝑘𝑗 (𝑥, 𝑡𝑑𝑗

(𝑅))  𝜑 (𝑡𝑑𝑗
(𝑅) − 𝜏𝑗

∗) − 𝑝0(𝑥)𝜑(𝑥 − 𝜏0)

𝑑𝑗

−∑𝑝ℓ(𝑥)

𝑛

ℓ=1

𝐷𝑎
𝐶

𝑥
𝛼ℓ𝜑(𝑥 − 𝜏ℓ )          (3.9) 

and 

𝜓𝑟
𝐼ℒ+1
[𝑣0,𝑣1 ,…,𝑣ℒ]

(𝑥)

= ∑
(−1)𝑧−𝑟

(𝑏 − 𝑎)𝑧

𝑁

𝑧=⌈𝛽⌉

 (
𝑁
𝑧
) (
𝑧
𝑟
) 𝑆𝑧(𝑥; 𝛽)

− [
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0

∑𝛿(𝑑𝑗
∗)𝑊

𝑑𝑗
∗
(𝑅)
 𝑘𝑗 (𝑥, 𝑡𝑑𝑗

∗
(𝑅)
)

𝑑𝑗
∗

∗∑∑(−1)𝑖+𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)
(𝜏𝑗
∗)
𝑘

(𝑏 − 𝑎)𝑖
(𝑡
𝑑𝑗
∗
(𝑅)
− 𝑎)

𝑖−𝑘

]

+

{
 
 
 
 

 
 
 
 

𝑖𝑓 𝑣0 = 0;

[
 
 
 
 
 

𝑝0(𝑥)∑∑(−1)𝑖+𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)
(𝜏0)

𝑘

(𝑏 − 𝑎)𝑖
(𝑥 − 𝑎)𝑖−𝑘

+ ∑ 𝑝ℓ(𝑥)

ℓ={𝑣1,𝑣2…,𝑣ℒ}

∑∑(−1)2𝑖−𝑘−𝑟 (
𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)

𝑖

𝑘=0

𝑁

𝑖=𝑟

(𝜏ℓ)
𝑖−𝑘

(𝑏 − 𝑎)𝑖
𝑀𝑘(𝑥; 𝛼ℓ)

]
 
 
 
 
 

𝑖𝑓 𝑣0 ≠ 0; ∑ 𝑝ℓ(𝑥)

ℓ={𝑣0,𝑣1…,𝑣ℒ}

∑∑(−1)2𝑖−𝑘−𝑟 (
𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)

𝑖

𝑘=0

𝑁

𝑖=𝑟

(𝜏ℓ)
𝑖−𝑘

(𝑏 − 𝑎)𝑖
𝑀𝑘(𝑥; 𝛼ℓ)

}
 
 
 
 

 
 
 
 

(3.10) 
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with 

𝐹𝐼ℒ+1
[𝑣0,𝑣1 ,…,𝑣ℒ]

(𝑥)

= 𝑓(𝑥) +
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0

∑𝛿(𝑑𝑗)𝑊𝑑𝑗
(𝑅) 𝑘𝑗 (𝑥, 𝑡𝑑𝑗

(𝑅))  𝜑 (𝑡𝑑𝑗
(𝑅) − 𝜏𝑗

∗)

𝑑𝑗

+

{
 
 

 
 𝑖𝑓  𝑣0 = 0; − ∑ 𝑝ℓ(𝑥) 𝐷𝑎

𝐶
𝑥
𝛼ℓ𝜑(𝑥 − 𝜏ℓ )

𝑛

ℓ=1,ℓ≠{𝑣1,𝑣2…,𝑣ℒ}

𝑖𝑓  𝑣0 ≠ 0; −𝑝0(𝑥)𝜑(𝑥 − 𝜏0) − ∑ 𝑝ℓ(𝑥) 𝐷𝑎
𝐶

𝑥
𝛼ℓ𝜑(𝑥 − 𝜏ℓ )

𝑛

ℓ=1,ℓ≠{𝑣0,𝑣1,𝑣2,…,𝑣ℒ} }
 
 

 
 

     (3.11) 

and if all of constant delay time (𝜏 ) is >  𝑎. That is 

𝜓𝑟
𝐼𝑛+1(𝑥) = ∑

(−1)𝑧−𝑟

(𝑏 − 𝑎)𝑧

𝑁

𝑧=⌈𝛽⌉

 (
𝑁
𝑧
) (
𝑧
𝑟
) 𝑆𝑧(𝑥; 𝛽)

− [
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0

∑𝛿(𝑑𝑗
∗)𝑊

𝑑𝑗
∗
(𝑅)
 𝑘𝑗 (𝑥, 𝑡𝑑𝑗

∗
(𝑅)
)

𝑑𝑗
∗

∗∑∑(−1)𝑖+𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)
(𝜏𝑗
∗)
𝑘

(𝑏 − 𝑎)𝑖
(𝑡
𝑑𝑗
∗
(𝑅)
− 𝑎)

𝑖−𝑘

]

+∑𝑝ℓ(𝑥)

𝑛

ℓ=1

∑∑(−1)2𝑖−𝑘−𝑟 (
𝑁
𝑖
) (
𝑖
𝑟
) (

𝑖
𝑖 − 𝑘

)

𝑖

𝑘=0

𝑁

𝑖=𝑟

(𝜏ℓ)
𝑖−𝑘

(𝑏 − 𝑎)𝑖
𝑀𝑘(𝑥; 𝛼ℓ)

+ 𝑝0(𝑥)∑∑(−1)𝑖+𝑘−𝑟
𝑖

𝑘=0

𝑁

𝑖=𝑟

(
𝑁
𝑖
) (
𝑖
𝑟
) (
𝑖
𝑘
)
(𝜏0)

𝑘

(𝑏 − 𝑎)𝑖
(𝑥 − 𝑎)𝑖−𝑘          (3.12) 

with 

𝐹𝐼𝑛+1(𝑥) = 𝑓(𝑥) +
𝑏 − 𝑎

2
∑𝜆𝑗

𝑚

𝑗=0

∑𝛿(𝑑𝑗)𝑊𝑑𝑗
(𝑅) 𝑘𝑗 (𝑥, 𝑡𝑑𝑗

(𝑅))  𝜑 (𝑡𝑑𝑗
(𝑅) − 𝜏𝑗

∗)

𝑑𝑗

        (3.13) 

The main points here are how to find the coefficients 𝐶𝑟 (𝑟 =  0, 1, . . . , 𝑁) of 𝑦𝑁(𝑥) in equation 

(3.1), such that coefficients 𝐶𝑟 (𝑟 =  0, 1, . . . , 𝑁) of) so  𝑦𝑁(𝑥)  that 𝑅𝑁(𝑥; 𝐶̅) is the Residual 

Sum of Squares (RSS) is minimized. We now wish to minimize of residual, i.e, make 𝑅𝑁(𝑥; 𝐶̅) 

vanishes as possible as at selecting points, say 𝑥 =  𝑥𝑝. From equation (3.5) we get : 

𝑅𝑁(𝑥; 𝐶̅) = ‖∑𝐶𝑟 𝜓𝑟

𝑁

𝑟=0

(𝑥) − 𝐹(𝑥) ‖

2

  

by using Newten-cotes point [38], let 𝑥 =  𝑥𝑝 where 𝑥𝑝 =
2𝑝−1

2(𝑁̅+1)
, 𝑝 = 1,2, … , 𝑁̅ + 1 so we get 
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𝑅𝑁(𝑥;  𝐶̅) = ∑ (∑𝐶𝑟 𝜓𝑟

𝑁

𝑟=0

(𝑥𝑝) − 𝐹(𝑥𝑝))

2

           

𝑁̅+1

𝑝=1

(3.14) 

After some simple manipulation, rewrite the equation (3.14) in the matrix form as : 

 

Φ𝐶 = 𝐹                  (3.15) 

where 

Φ = [

𝜓0(𝑥1) 𝜓1(𝑥1) 𝜓2(𝑥1) ⋯ 𝜓𝑁(𝑥1)

𝜓0(𝑥2) 𝜓1(𝑥2) 𝜓2(𝑥2) ⋯ 𝜓𝑁(𝑥2)
⋮ ⋮ ⋮ ⋱ ⋮

𝜓0(𝑥𝑁̅+1) 𝜓1(𝑥𝑁̅+1) 𝜓2(𝑥𝑁̅+1) ⋯ 𝜓𝑁(𝑥𝑁̅+1)

]

(𝑁̅+1)×(𝑁+1)

, 𝐶 = [

𝐶0
𝐶1
⋮
𝐶𝑁

]

(𝑁+1)×1

, 

𝐹 = [

𝐹(𝑥1)
𝐹(𝑥2)
⋮

𝐹(𝑥𝑁̅+1)

]

(𝑁̅+1)×1

 

According to the boundary conditions, they can be expressed as simply as follows: 

∑{𝑔𝑘𝜌𝑦
(𝜌)(𝑎) + ℎ𝑘𝜌𝑦

(𝜌)(𝑏)} = 𝜗𝑘  ; 𝑘 = 0,1, … , 𝜇 − 1

𝜇−1

𝜌=0

            (3.16)   

by using lemma 2.6 can be substituted into equation (3.16) to produce the following expression: 

∑𝐶𝑟 [Ω𝑘𝑟] = 𝜗𝑘         𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑘 = 0,1, … ,

𝑁

𝑟=0

 𝜇 − 1           (3.17) 

where 

Ω𝑘𝑟 =∑ {𝑔𝑘𝜌
𝑑𝜌

𝑑𝑥𝜌
 𝐵𝑟,𝑁(𝑥)|

𝑥=𝑎
+ ℎ𝑘𝜌

𝑑𝜌

𝑑𝑥𝜌
 𝐵𝑟,𝑁(𝑥)|

𝑥=𝑏
}

𝜇−1

𝜌=0

          (3.18) 

in general, the matrix conditions form became : 

Ω̅𝜇−1 = [

Ω00 Ω01 ⋯ Ω0𝑁
Ω10 Ω11 ⋯ Ω1𝑁
⋮ ⋮ ⋮ ⋮

Ω(𝜇−1 )0 Ω(𝜇−1 )1 ⋯ Ω(𝜇−1 )𝑁

]

(𝜇−1)×(𝑁+1)

, 𝐶 = [

𝐶0
𝐶1
⋮
𝐶𝑁

]

(𝑁+1)×1

, 

𝑉 = [

𝜗0
𝜗1
⋮

𝜗(𝜇−1)

]

(𝜇−1)×1

 

where 

Ω𝑘𝑟 =∑ {𝑔𝑘𝜌
𝑑𝜌

𝑑𝑥𝜌
 𝐵𝑟,𝑁(𝑥)|

𝑥=𝑎
+ ℎ𝑘𝜌

𝑑𝜌

𝑑𝑥𝜌
 𝐵𝑟,𝑁(𝑥)|

𝑥=𝑏
}

𝜇−1

𝜌=0

           (3.19) 
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In matrix form, this gives 

Ω̅𝜇−1 𝐶 = 𝑉                     (3.20) 

The result of adding the last rows (3.20) to (3.15) is a new matrix: 

𝐺𝐶 = 𝑊                           (3.21) 

where 

𝐺 = [

Φ
⋯

Ω̅𝜇−1 
]                            𝑊 = [

𝐹
⋯
𝑉
] 

The constant coefficients 𝐶𝑟 in equation (3.21) can be found by storing the matrix 𝐺, computing 

𝐺𝑇𝐺 and 𝐺𝑇𝑊, and then using the 𝐿𝑈-factorization approach or any numerical computations 

methods to solve: [𝐺𝑇𝐺 ]𝐶 = [𝐺𝑇𝑊 ]. 

      The values 𝐶𝑟 
,s in equation (3.1) are thus substituted to obtain the approximate solution for 

higher order fractional linear FIFDEs with constant multi-time Retarded Delay with variable 

coefficients equation (1.1). 

 

The Algorithm (ADBM): 

      We summarize the procedures of the proposed Bernstein collocation method for approximate 

the solution of FIFDEs-Delays multi-time in the following stages: 

Step 1. Set 𝜇 = max {𝜔𝛽 , 𝜔ℓ
𝛼: ℓ = 1: 𝑛̅̅ ̅̅ ̅}   where 𝜔𝛽 = ⌈𝛽⌉, 𝜔ℓ

𝛼 = ⌈𝛼ℓ⌉.  

Step 2.  Set  the Newten-cotes points,  𝑥𝑝 =
2𝑝−1

2(𝑁̅+1)
, 𝑤ℎ𝑒𝑟𝑒  𝑝 = 1,2, … , 𝑁̅ + 1. 

Step 3. For each 𝑥 = 𝑥𝑝: 

a. For the Bernstein polynomial at fixed point, evaluate 𝜓𝑟(𝑥) by going over all the 

fundamental components as in equation (3.6), and then use equations (3.8, 3.10, and 3.12) 

for cases where all 𝑟 =  0, 1, . . . , 𝑁. 

b. After going over all the fundamental components in equation (3.7), compute 𝐹(𝑥) for 

each case using equations (3.9, 3.11, and 3.13). 

Step 4. Equation 3.15 is used to construct the matrices 𝛷 and 𝐹.     

Step 5. Using equation (3.20), the boundary condition matrices Ω̅𝜇−1 and 𝑉 are constructed. 

Step 6. The matrix 𝐺 and 𝑊, which describe the linear system (3.21), are constructed using 

steps (4 and 5). 

Step 7. In order to determine constant coefficients 𝐶𝑟(𝑟 =  0, 1, . . . , 𝑁), the LU-factorization 

technique is applied to construct the system in step 5 after multiplying both sides by 𝐺𝑇, as 

defined in equation (3.21). 

Step 8. The approximate solution 𝑦𝑁(𝑥) of 𝑦(𝑥) can be obtained by substituting 𝐶𝑟’s in 

equation (3.1), with 𝐵𝑟,𝑁 (𝑥). 
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4. TESTING EXAMPLES 

 The numerical section uses the 𝐿2 error norm to verify the correctness and efficacy of the 

proposed schemes. The suggested algorithm ADBM produces numerical results that are 

compared, and a Python program is used to generate both the numerical and graphical results. 

 

Test Example 4.1. Consider a linear FIFDEs-Delays constant multi-time delay containing 

various fractional orders on the closed bounded interval [0, 1] with variable coefficients: 

𝐷𝑥
0.9𝑦(𝑥) −

1

30
𝐶 𝐷𝑥

0.6𝑦(𝑥 − 0.1) + cos(𝑥) 𝑦(𝑥 − 0.43) = 𝑓(𝑥)0
𝐶    

+∫ [6(𝑥𝑡)𝑦(𝑡 − 0.5) + (𝑥2 + 𝑡2) 𝑦(𝑡 − 0.62) − 𝑒−(𝑥+𝑡)𝑦(𝑡 − 0.3)]𝑑𝑡         (4.1)
1

0

 

Where 

𝑓(𝑥) = 2
Γ(2)

Γ(1.1)
𝑥0.1 −

Γ(4)

Γ(3.1)
𝑥2.1 +

1

3

Γ(4)

Γ(3.4)
𝑥2.4 −

0.3

3

Γ(3)

Γ(2.4)
𝑥1.4 −

1.97

3

Γ(2)

Γ(1.4)
𝑥0.4 − cos(𝑥) 𝑥3 +

129

100
cos(𝑥) 𝑥2 −

49483

62500
𝑥2 +

14453

10000
𝑐𝑜𝑥(𝑥)𝑥 −

157

40
𝑥 +

219507

1000000
cos(𝑥) −

104119

250000
−
2043

1000
𝑒−𝑥 +

7613

1000
𝑒−(𝑥+1)  

with boundary condition 1𝑦(0) − 0𝑦(1) = 1 and the historical function 𝜑(𝑥)  =  1 +  2𝑥 −

 𝑥3. While the exact solution is 𝑦(𝑥)  =  1 +  𝑥(2 − 𝑥2).  

Here, based on the given example:    

Assume the approximate solution has the following form, while the numerical approximation 

numbers in the approach and general Clenshaw-Curtis formula, respectively, are 𝑁 =  3 

and 𝑅 =  18: 

𝑦(𝑥) ≅ 𝑦3(𝑥) =∑𝐶𝑟𝐵𝑟,3(𝑥)                     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 = 0,1,2,3

3

𝑟=0

 

Then the Newten-cotes points 𝑥𝑝, such that 𝑥𝑝 =
2𝑝−1

2(𝑁̅+1)
, 𝑝 = 1,2, … , 𝑁̅ + 1  where here take 

𝑁̅  =  10 so: 

𝑥1 = 0.045454545455, 𝑥2 =  0.136363636364, 𝑥30.227272727273, 𝑥4 =  0.318181818182,
𝑥5 =  0.409090909091, 𝑥6 =  0.5, 𝑥7 =  0.590909090909, 𝑥8 =  0.681818181818,

𝑥9 =  0.772727272727, 𝑥10 =  0.863636363636, 𝑥11 =  0.954545454545
 

The fundamental matrix for equation (3.15) given the following manner : 
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Φ =

[
 
 
 
 
 
 
 
 
 
 
−2.1356657438950 1.9322320513566 0.20043285036204 0.020263839863690
−1.5723482025663 0.81358765858055 0.49892116512337 0.047053536120602
−1.3588492175817 0.16863598860945 0.63106260253410 0.11294704784978
−1.1705702605709 −0.37801122294281 0.64971447171118 0.21563759204135
−1.0169073310821 −0.81808545627682 0.55618975709560 0.35472124126400
−0.19517586762326 −0.98982012776041 0.36345220950811 0.53016621950332
−0.33376483780295 −1.0885842960374 0.090513866832708 0.74422327191852
−0.46221583145738 −1.1547349187714 −0.27765137473397 0.99952296508770
−0.58705057578179 −1.1683912017417 −0.75553500885278 1.2974919168082
−0.71527028673478 −1.1104287723212 −1.3548629517277 1.6380932302396
−0.85402231411338 −0.96349998528176 −2.0837155374467 2.0196281725443 ]

 
 
 
 
 
 
 
 
 
 

11×4

  

 

𝐹 =

[
 
 
 
 
 
 
 
 
 
 
1.59249171228282
1.04136315846234
0.619967420820720
0.145976142753862
−0.373969972201051
0.0626098659853248
−0.449425444917605
−1.03667881993776
−1.70349753627017
−2.45244308143859
−3.28400160623916 ]

 
 
 
 
 
 
 
 
 
 

11×1

, with Bernstein parameter terms:  𝐶 = [

𝐶0
𝐶1
𝐶2
𝐶3

]

4×1

 

For the boundary conditions the fundamental matrices for equation (3.20) we get: 

                                             Ω̅𝜇−1 = [1 0 0 0], and   𝑉 = [1]. 

 solving the system above by any numerical methods (here using 𝐿𝑈-factorization procedure), by 

procedure that [𝐺𝑇𝐺; 𝐺𝑇𝑊], the approximate solutions 𝑦3(𝑥) are obtained. 

[𝐺𝑇𝐺; 𝐺𝑇𝑊] = 

[

14.232883626545 −0.9673211364400 −0.1768267194844 −5.3559237889929 ; 1.5043211077884
−0.96732113644008 12.260734641454 4.4562372347466 −8.0452009048009 ; 13.781715937747
−0.17682671948448 4.4562372347466 8.3845493686193 −6.9892799268755 ; 12.839441801048
−5.3559237889929 −8.0452009048009 −6.9892799268755 10.467431741170 ; −14.147414225439

]  

Thus we obtaining the Bernstein parameters 𝐶𝑟  =  [𝐶0 , 𝐶1 , 𝐶2 , 𝐶3 ], see table(1).  

          

Table 1. Bernstein parameters for (𝑦3(𝑥))  while 𝑁 =  3 and 𝑅 =  18 

𝐶𝑟 𝑅 =  18 

𝐶0 1.000003476961 

𝐶1 1.666532788504 

𝐶2 2.332648626121 

𝐶3 1.998546923461 
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 After putting all 𝐶𝑟’s in the Bernstein approximation equation (3.1) for applying the Clenshaw-

Curtis quadrature formula (2.24) for 𝑅 =  18 we obtain: 

𝑦3
(𝑅=18)(𝑥) ≅ 1.000003476961(1 − 𝑥)3 + 1.666532788504(3𝑥)(1 − 𝑥)2

+ 2.332648626121(3𝑥2)(1 − 𝑥) + 1.998546923461𝑥3 

 

     Using the same step as before, we can get approximation solution to the problem for 𝑁 =  3, 

𝑁̅ =  10 with 𝑅 =  19 and 𝑅 =  20, respectively. After that, we run the general python program 

created for this purpose: 

 

Table 2. Bernstein parameters for (𝑦3(𝑥))  while 𝑁 =  3 and 𝑅 =  19, 20 respectively 

𝐶𝑟 𝑅 =  19 𝑅 =  20 

𝐶0 1.000000136263 0.999999998725 

𝐶1 1 .666668704122 1.666666679188 

𝐶2 2.333350474952 2.333333361985 

𝐶3 2.000040353488 2.000000040551 

 

       So, the approximate solution for 𝑅 =  19 become: 

𝑦3
(𝑅=19)(𝑥) ≅ 1.000000136263(1 − 𝑥)3 +  1 .666668704122(3𝑥)(1 − 𝑥)2

+ 2.333350474952(3𝑥2)(1 − 𝑥) +  2.000040353488𝑥3 

   The approximate solution for 𝑅 =  20 become: 

𝑦3
(𝑅=20)(𝑥) ≅ 0.999999998725(1 − 𝑥)3 + 1.666666679188(3𝑥)(1 − 𝑥)2

+ 2.333333361985(3𝑥2)(1 − 𝑥) + 2.000000040551𝑥3 

Table (3) compares the exact solution 𝑦(𝑥) and the approximate solution 𝑦3(𝑥). It also displays 

the running times, least square errors, and residual equation values 𝑅3(𝑥; 𝐶̅). The formula (3.5) is 

applied for three distinct values 𝑅 =  (18, 19, 20) respectively. 
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             Table 3. A comparison between the exact solution and the approximate solution 

  The approximate solutions 𝑦3(𝑥) with respective to integral parts 𝑅 

x Exact 𝑅 = 18 𝑅 = 19 𝑅 = 20 

0 1 1.00000347696 1.00000013626 0.999999998725 

0.1 1.199 1.19895006214 1.19900109761 1.19900000293 

0.2 1.392 1.39187301449 1.39200282057 1.39200000723 

0.3 1.573 1.5727735096 1.57300527457 1.57300001159 

0.4 1.736 1.73565272308 1.73600842902 1.73600001598 

0.5 1.875 1.87451183054 1.87501225337 1.87500002035 

0.6 1.984 1.98335200757 1.98401671704 1.98400002466 

0.7 2.057 2.05617442977 2.05702178946 2.05700002888 

0.8 2.088 2.08698027275 2.08802744005 2.08800003296 

0.9 2.071 2.06977071212 2.07103363825 2.07100003686 

1 2 1.99854692346 2.00004035349 2.00000004055 

𝐿. 𝑆. 𝐸 6.192723962682916

× 10−6 

4.525326179507544

× 10−9 

6.3977047977615004

× 10−15 

𝑅3
= 𝐿. 𝑆. 𝐸𝑦 

1.28608853760722

× 10−9 

6.36107340448893

× 10−13 

1.52104183320445

× 10−17 

𝑅. 𝑇𝑖𝑚𝑒

/𝑆𝑒𝑐 

0.5465397834777832 0.6033868789672852 0.656287431716919 
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Figure 1. Exact and approximate solution of Test  Example 4.1 

The absolute error values for a numerical method used with various values of 𝑅 =  (18, 19, 20) 

are displayed in the table(4). The absolute error typically drops as 𝑅 rises, indicating that the 

approach gets more precise. This demonstrates the connection between the precision of the 

findings and the parameter 𝑅. 

Table 4. Absolute error of the method with respective different input 𝑅 

  Absolute error 

x Exact 𝑅 = 18 𝑅 = 19 R = 20 

0 1 3.47696 × 10−6 1.36263 × 10−7 1.275× 10−9 

0.1 1.199 4.99379× 10−5 1.09761 × 10−6 2.927× 10−9 

0.2 1.392 1.2698× 10−4 2.82057 × 10−6 7.230× 10−9 

0.3 1.573 2.264× 10−4 5.27457 × 10−6 1.1594× 10−8 

0.4 1.736 3.4727× 10−4 8.42902 × 10−6 1.5981× 10−8 

0.5 1.875 4.8816× 10−4 1.22534 × 10−6 2.0349× 10−8 

0.6 1.984 6.4799× 10−4 1.6717 × 10−5 2.4661× 10−8 

0.7 2.057 8.2557× 10−4 2.17895× 10−5 2.8877× 10−8 

0.8 2.088 1.01973× 10−3 2.74401× 10−5 3.2956× 10−8 

0.9 2.071 1.22929× 10−3 3.36383 × 10−5 3.6861× 10−8 

1 2 1.45308× 10−3 4.0353× 10−5 4.0551× 10−8 
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Figure 2. Absolute error of  Test Example 4.1 

Apply the same stages as in the algorithm ADBM and running the Python program which are 

written for this purpose, for 𝑁 =  3 and 𝑁 =  6 and 𝑁 =  8 with 𝑅 =  20 we obtain the 

Bernstein approximate solution for 𝑦𝑁(𝑥) with respective to 𝑁. we listed all values with error in 

table (5). 

 Table 5. A comparison between the exact solution and the approximate solution 

  The approximate solutions and absolute error for 𝑅 =  20 with respective different input 𝑁 

x Exa

ct 

𝑦3(𝑥) absolute error 

𝑦3(𝑥) 

𝑦6(𝑥) absolute error 

𝑦6(𝑥) 

𝑦8(𝑥) absolute error 

𝑦8(𝑥) 

0 1 0.999999998725 1.275 × 10−9 0.999999999925 7.5 × 10−11 0.999999999928 7.2 × 10−11 

0.1 1.199 1.19900000293 2.927 × 10−9 1.199000004004 4.004 × 10−9 1.199000003967 3.967 × 10−9 

0.2 1.392 1.39200000723 7.23 × 10−9 1.392000008391 8.391 × 10−9 1.392000008246 8.246 × 10−9 

0.3 1.573 1.57300001159 1.1594

× 10−8 

1.573000012954 1.2945

× 10−8 

1.573000012623 1.2623

× 10−8 

0.4 1.736 1.73600001598 1.5981

× 10−8 

1.736000017566 1.7566

× 10−8 

1.736000017139 1.7139

× 10−8 

0.5 1.875 1.87500002035 2.0349

× 10−8 

1.875000022116 2.2116

× 10−8 

1.875000021642 2.1642

× 10−8 

0.6 1.984 1.98400002466 2.4661

× 10−8 

1.984000026524 2.6524

× 10−8 

1.984000025955 2.5955

× 10−8 

3.0.7 2.057 2.05700002888 2.8877

× 10−8 

2.057000030755 3.0755

× 10−8 

2.057000030053 3.0053

× 10−8 

0.8 2.088 2.08800003296 3.2956

× 10−8 

2.088000034841 3.4841

× 10−8 

2.088000034048 3.4048

× 10−8 

0.9 2.071 2.07100003686 3.6861

× 10−8 

2.071000038895 3.8895

× 10−8 

2.071000038042 3.8042

× 10−8 
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Figure 3. Exact and approximate solution of  Test Example 4.1 

 
Figure 4. Absolute error of Test Example 4.1 

Test Example 4.2. Consider the following (FIFDEs-Delays) in which 0 <  𝛼, 𝛽 ≤  1 that is: 

1 2 2.00000004055 4.0551

× 10−8 

2.000000043135 4.3135

× 10−8 

2.000000042197 4.2197

× 10−8 

𝐿. 𝑆. 𝐸 6.3977047977615004

× 10−15 

 7.288638801874048 

× 10−15 

 6.969090392604912

× 10−15 

 

𝑅𝑁
= 𝐿. 𝑆. 𝐸𝑦 

1.52104183320445

× 10−17 

 1.69592688263951

× 10−18 

 1.60052835432848

× 10−19 

 

𝑅. 𝑇𝑖𝑚𝑒

/𝑠𝑒𝑐 

0.656287431716919  1.7596397399902344  3.199505090713501  
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𝐷𝑥
0.7𝑦(𝑥) + cosh(𝑥)0

𝐶 𝐷𝑥
0.6𝑦(𝑥 − 0.1)0

𝐶 −
𝑥

3
𝐷𝑥
0.5𝑦(𝑥 − 0.2) +

1

50
𝐶 𝐷𝑥

0.4𝑦(𝑥 − 0.3)       0
𝐶

+
𝑒𝑥

6
𝑦(𝑥 − 0.5)

= 𝑓(𝑥) + ∫ (−𝑡𝑠𝑖𝑛(𝑥))𝑦(𝑡 − 0.7)𝑑𝑡
1

0

+∫ (𝑡 + 𝑥2)𝑦(𝑡 − 0.9)𝑑𝑡         (4.2)
1

0

 

Where 

𝑓(𝑥) =
Γ(5)

Γ(4.3)
𝑥3.3 − 2

Γ(2)

Γ(1.3)
𝑥0.3 + cos(𝑥) [

Γ(5)

Γ(4.4)
𝑥3.4 − 0.4

Γ(4)

Γ(3.4)
𝑥2.4 + 0.06

Γ(3)

Γ(2.4)
𝑥1.4 −

2.004
Γ(2)

Γ(1.4)
𝑥0.4] −

𝑥

3
[
Γ(5)

Γ(4.5)
𝑥3.5 − 0.8

Γ(4)

Γ(3.5)
𝑥2.5 + 0.24

Γ(3)

Γ(2.5)
𝑥1.5 − 2.032

Γ(2)

Γ(1.5)
𝑥0.5] +

1

5
[
Γ(5)

Γ(4.6)
𝑥3.6 − 1.2

Γ(4)

Γ(3.6)
𝑥2.6 + 0.54

Γ(3)

Γ(2.6)
𝑥1.6 − 2.108

Γ(2)

Γ(1.6)
𝑥0.6] +

𝑒𝑥𝑥4

6
−
𝑒𝑥𝑥3

3
+
𝑒𝑥𝑥2

4
−

9181

10000
𝑥2 −

5

12
𝑒𝑥𝑥 +

17

96
𝑒𝑥 +

94291666666667

2500000000000000
sin(𝑥) −

5012

20000
  

With boundary conditions 1𝑦(0) + 0𝑦(1)  =  0, while the historical function is 𝜑(𝑥)  =  𝑥4  −

 2𝑥.  where 𝑦(𝑥)  =  𝑥(𝑥3  −  2) is the exact solution.  

Take 𝑁 =  4 and 𝑁̅ =  7 and (𝑅 =  10, 15, 25) respectively . Assume the approximate solution 

has the following form (numerical approximation number in approach, general Clenshaw-Curtis 

formula): 

𝑦(𝑥) ≅ 𝑦4(𝑥) =∑𝐶𝑟𝐵𝑟,4(𝑥)                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 = 0,1, … ,4

4

𝑟=0

 

After executing a Python program to get the constant coefficients 𝐶𝑟 , we can obtain an 

approximate solution to our problem by using the same procedure as in Test Example 4.1. 

Table 6. Bernstein parameters for (𝑦4(𝑥))  while 𝑁 =  4 and 𝑅 =  10,15, 25 

respectively 

𝐶𝑟 𝑅 =  10 𝑅 =  15 𝑅 =  25 

𝐶0 −1.525656939160

× 10−5 

−5.597377912818

× 10−6 

1.123689858556

× 10−16 

𝐶1 −4.998453337048

× 10−1 

−4.999340339434 

× 10−1 

−5.000000000000

× 10−1 

𝐶2 −1.000240669159 −1.000104953236 −1.000000000000 

𝐶3 −1.500733498773 −1.500326259683 −1.500000000000 

𝐶4 −1.001679607642  −1.000743519947 −1.00000000000 

 

So the approximate solution for 𝑅 =  (10, 15, 25) respectively we get : 

𝑦4
(𝑅=10)(𝑥) = −1.525656939160 × 10−5(1 − 𝑥)4 − 4.998453337048 × 10−1(4𝑥)(1 − 𝑥)3

− 1.000240669159(6𝑥2)(1 − 𝑥)2 − 1.500733498773(4𝑥3)(1 − 𝑥)

− 1.001679607642 𝑥4 
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𝑦4
(𝑅=15)(𝑥) = −5.597377912818 × 10−6(1 − 𝑥)4 − 4.999340339434 × 10−1(4𝑥)(1 − 𝑥)3

− 1.000104953236(6𝑥2)(1 − 𝑥)2 − 1.500326259683(4𝑥3)(1 − 𝑥)

− 1.000743519947𝑥4 

𝑦4
(𝑅=25)(𝑥) = 1.123689858556 × 10−16(1 − 𝑥)4 − 5.0 × 10−1(4𝑥)(1 − 𝑥)3

− 1.0(6𝑥2)(1 − 𝑥)2 − 1.5(4𝑥3)(1 − 𝑥) − 1.0𝑥4 

Furthermore, after running the programs, table (7) and the approximation expression, the table(7) 

compares the exact solution 𝑦(𝑥) and the approximate solution 𝑦4(𝑥) . It also displays the 

running times, least square errors, and residual equation values 𝑅4(𝑥; 𝐶̅). The formula (3.5) is 

applied for three distinct values of 𝑅. the following approximate formulas are obtaine 

Table 7. A comparison between the exact solution and the approximate solution 

  The approximate solutions 𝑦4(𝑥)  with respective to integral parts 𝑅 

x Exact 𝑅 = 10 R=15 𝑅 = 25 

0 0 −1.52565693916

× 10−5 

−5.59737791282

× 10−6 

1.12368985856

× 10−16 

0.0526316 −0.105255484534 −0.105244096275 −0.105249936675 −0.105255484534 

0.105263 −0.210403542023 −0.210382750426 −0.210394273417 −0.210403542023 

0.157895 −0.315167931492 −0.315153568813 −0.315161787751 −0.315167931492 

0.210526 −0.419088251318 −0.419094892247 −0.419091561363 −0.419088251318 

0.263158 −0.521519939227 −0.521561052551 −0.521538577471 −0.521519939227 

0.315789 −0.621634272297 −0.621722372566 −0.621673720828 −0.621634272297 

0.368421 −0.718418366955 −0.718565166147 −0.718483777722 −0.718418366955 

0.421053 −0.810675178981 −0.810891738167 −0.810771435977 −0.810675178981 

0.473684 −0.897023503503 −0.897320384513 −0.897155284948 −0.897023503503 

0.526316 −0.975897975 −0.97628539209 −0.976069815529 −0.975897975 

0.578947 −1.045549067303 −1.04603703882 −1.04576542014 −1.0455490673 

0.631579 −1.104043093592 −1.10464159363 −1.10430839276 −1.10404309359 

0.684211 −1.149262206398 −1.14998131648 −1.14958092886 −1.1492622064 

0.736842 −1.178904397603 −1.17975445833 −1.17928112549 −1.1789043976 

0.789474 −1.190483498438 −1.19147526117 −1.1909229812 −1.19048349844 

0.842105 −1.181329179488 −1.182473958 −1.1818363961 −1.18132917949 

0.894737 −1.148586950683 −1.14989677283 −1.14916717183 −1.14858695068 

0.947368 −1.089218161309 −1.0907059207 −1.08987701154 −1.08921816131 

1 −1 −1.00167960764 −1.00074351995 −1 

𝐿. 𝑆. 𝐸 1.1197471434910678

× 10−5 

2.1972158044305715

× 10−6 

3.085062829263179

× 10−30 

𝑅4 = 𝐿. 𝐸. 𝑆𝑦 8.22667352497636

× 10−8 

1.47764708280376

× 10−8 

2.97085518356102

× 10−30 

𝑅. 𝑇𝑖𝑚𝑒/𝑆𝑒𝑐 0.6163537502288818 0.618492841720581 0.7572336196899414 
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The absolute error values for a numerical method used with various values of 𝑅 =  10, 15, 25 

are displayed in the table(8). The absolute error typically drops as 𝑅 rises, indicating that the 

approach becomes more precise. This demonstrates the connection between the precision of the 

findings and the parameter 𝑅. 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Absolute error of the method with respective different input 𝑅 

  Absolute error 

x Exact 𝑅 = 10 𝑅 = 15 𝑅 = 25 

0 0 1.52566 × 10−5 5.59737 × 10−6 1.12369 × 10−16 

0.0526316 −0.105255484534 1.13883 × 10−5 5.54785 × 10−6 4.21191 × 10−14 

0.105263 −0.210403542023 2.07916 × 10−5 9.26860 × 10−6 4.17999 × 10−14 

0.157895 −0.315167931492 1.43627 × 10−5 6.14374 × 10−6 3.83582 × 10−14 

0.210526 −0.419088251318 6.64093 × 10−6 3.31004 × 10−6 3.88578 × 10−16 

0.263158 −0.521519939227 4.11133 × 10−5 1.86382 × 10−5 1.43219 × 10−14 

0.315789 −0.621634272297 8.81003 × 10−5 3.94485 × 10−5 3.30846 × 10−14 

0.368421 −0.718418366955 1.46799 × 10−4 6.54107 × 10−5 4.08562 × 10−14 

0.421053 −0.810675178981 2.16559 × 10−4 9.62569 × 10−5 3.11973 × 10−14 

0.473684 −0.897023503503 2.96881 × 10−4 1.31781 × 10−4 1.11022 × 10−14 

0.526316 −0.975897975 3.87417 × 10−4 1.71840 × 10−4 8.21565 × 10−15 

0.578947 −1.045549067303 4.87972 × 10−4 2.16352 × 10−4 4.41869 × 10−14 

0.631579 −1.104043093592 5.98500 × 10−4 2.65299 × 10−4 2.33147 × 10−14 

0.684211 −1.149262206398 7.19110 × 10−4 3.18722 × 10−4 4.77396 × 10−14 

0.736842 -1.178904397603 8.50061 × 10−4 3.76727 × 10−4 1.57874 × 10−13 

0.789474 −1.190483498438 9.91763 × 10−4 4.39482 × 10−4 4.71179 × 10−13 

0.842105 −1.181329179488 1.14478 × 10−3 5.07216 × 10−4 4.26992 × 10−13 

0.894737 −1.148586950683 1.30982 × 10−3 5.80221 × 10−4 3.12861 × 10−13 

0.947368 −1.089218161309 1.48776 × 10−3 6.58850 × 10−4 3.82361 × 10−13 

1 −1 1.67961 × 10−3 7.43519 × 10−4 0 

mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive


Article  
JOURNAL OF UNIVERSITY OF BABYLON 

For Pure and Applied Sciences (JUBPAS)  
Vol. 33 ; No.4  | 2025  

 

Page | 387 

in
fo

@
jo

u
rn

al
o

fb
ab

yl
o

n
.c

o
m

   
|  

 ju
b

@
it

n
e

t.
u

o
b

ab
yl

o
n

.e
d

u
.iq

 | 
w

w
w

.jo
u

rn
al

o
fb

ab
yl

o
n

.c
o

m
   

   
   

   
   

IS
S

N
: 2

31
2-

8
13

5 
 | 

 P
ri

n
t 

IS
S

N
: 1

9
9

2-
0

6
52

 
ــم

ج
جلــة 

ــــ
امعة ب
ـ

ل للعلــ
ـابــ

ــــــ
ص

وم ال
ـــ

ط
رفــة والت

ــ
بيقي

ــ
 ة

ــم
ج

جلــة 
ـــــ

امعة بـ
ــ

ل للعلـ
ـابــ

ـ
وم

 
ص

ال
ـــ

ط
رفــة والت

ــ
بيقي
ــ

 ة
ـم

ج
جلــة 

ـــ
امعة بـ
ـ

ل للعلـ
ـابــ

ــ
ص

وم ال
ـ

ط
رفــة والت

ـــــــ
بيقي

ــ
 ة

 

 

 
Figure 5. Exact and approximate solution of  Test Example 4.2 

 
Figure 6. Absolute error of Test Example 4.2 

 

Test Example 4.3. Consider the following linear fractional (FIFDEs-Delays) in which 0 <

𝛼, 𝛽 ≤  1 

𝐷𝑥
0.5𝑦(𝑥) +0

𝐶 𝐷𝑥
0.4 0

𝐶 𝑦(𝑥 − 0.2)  + sinh(𝑥)𝑦(𝑥 − 0.4)

= 𝑓(𝑥) + ∫ cos(𝑥) 𝑦(𝑡 − 0.6)𝑑𝑡
1

0

+∫ 2(𝑥 − 𝑡)𝑦(𝑡 − 0.8)𝑑𝑡     
1

0

       (4.3) 

where 
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𝑓(𝑥) = ∑ [
−𝑥ℎ+0.5

Γ(ℎ + 1.5)
− 𝑒−0.2

𝑥ℎ+0.6

Γ(ℎ + 1.6)
]

∞

ℎ=0

+ sin(𝑥)[1 − 𝑒(𝑥−0.4)] − cos(𝑥) [1 − 𝑒0.4 + 𝑒−0.6]

− 2𝑥[1 − 𝑒0.2 + 𝑒−0.8] − 2𝑒−0.8 + 1 

Using a boundary condition 1𝑦(0) + 0 𝑦(1)  =  0 and the function of history 𝜑(𝑥)  =  1 − 𝑒𝑥, 

where 𝑦(𝑥)  =  1 − 𝑒𝑥 is the exact solution.  

Suppose that, we take 𝑀 ̅̅ ̅terms from part 𝑓(𝑥): 

𝑓(𝑥) = ∑ [
−𝑥ℎ+0.5

Γ(ℎ + 1.5)
− 𝑒−0.2

𝑥ℎ+0.6

Γ(ℎ + 1.6)
]

𝑀 ̅̅̅̅

ℎ=0

+ sin(𝑥)[1 − 𝑒(𝑥−0.4)] − cos(𝑥) [1 − 𝑒0.4 + 𝑒−0.6]

− 2𝑥[1 − 𝑒0.2 + 𝑒−0.8] − 2𝑒−0.8 + 1 

Take 𝑁 =  8 and 𝑁 ̅̅ ̅ =  8 and 𝑅 =  22. Assume the approximate solution has the following form 

(numerical approximation number in approach, general Clenshaw-Curtis formula): 

𝑦(𝑥) ≅ 𝑦8(𝑥) =∑𝐶𝑟𝐵𝑟,8(𝑥)                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 = 0,1, … ,8

8

𝑟=0

 

After executing a Python program to get the constant coefficients 𝐶𝑟 , 

Table 9. Bernstein parameters for (𝑦8(𝑥)) while 𝑁 =  8 and 𝑀 ̅̅ ̅  =

 4, 8, 10 respectively 

𝐶𝑟 𝑀 ̅̅ ̅ = 4 𝑀 ̅̅ ̅ = 8 𝑀 ̅̅ ̅ = 10 

𝐶0 −4.425507899959

× 10−10 

1.304776482284

× 10−14 

3.795959002425

× 10−12 

𝐶1 −1.249999850265

× 10−1 

−1.250000000971

× 10−1 

−1.250000003792

× 10−1 

𝐶2 −2.678571188803

× 10−1 

−2.678571424636

× 10−1 

−2.678571417154

× 10−1 

𝐶3 −4.315476242192

× 10−1 

−4.315476185230

× 10−1 

−4.315476177733

× 10−1 

𝐶4 −6.196428068734

× 10−1 

−6.196428624525

× 10−1 

−6.196428735721

× 10−1 

𝐶5 −8.364585055317

× 10−1 

−8.364583216315

× 10−1 

−8.364582870416

× 10−1 

𝐶6 −1.087252202546 −1.087251993991 −1.087252101780 

𝐶7 −1.378450634366 −1.378497110930 −1.378496618155 

𝐶8 −1.717962516236 −1.718277272478 −1.718281786193 

We can obtain an approximate solution to our problem by using the same procedure as in Test 

Example 4.1. The approximate solution for 𝑀 ̅̅ ̅  =  (4, 8, 10) respectively we get: 
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𝑦8
(𝑀 ̅̅̅̅ =4)

= −4.425507899959 × 10−10(1 − 𝑥)8 − 1.249999850265 × 10−1(8𝑥)(1 − 𝑥)7

− 2.678571188803 × 10−1(28𝑥2)(1 − 𝑥)6 − 4.315476242192

× 10−1(56𝑥3)(1 − 𝑥)5 − 6.196428068734 × 10−1(70𝑥4)(1 − 𝑥)4

− 8.364585055317 × 10−1(56𝑥5)(1 − 𝑥)3

− 1.087252202546(28𝑥6)(1 − 𝑥)2 − 1.378450634366(8𝑥7)(1 − 𝑥)

− 1.717962516236𝑥8 

𝑦8
(𝑀 ̅̅̅̅ =8)

= 1.304776482284 × 10−14(1 − 𝑥)8 − 1.250000000971 × 10−1(8𝑥)(1 − 𝑥)7

− 2.678571424636 × 10−1(28𝑥2)(1 − 𝑥)6 − 4.315476185230

× 10−1(56𝑥3)(1 − 𝑥)5 − 6.196428624525 × 10−1(70𝑥4)(1 − 𝑥)4

− 8.364583216315 × 10−1(56𝑥5)(1 − 𝑥)3

− 1.087251993991(28𝑥6)(1 − 𝑥)2 − 1.378497110930(8𝑥7)(1 − 𝑥)

− 1.718277272478𝑥8 

𝑦8
(𝑀 ̅̅̅̅ =10)

= 3.795959002425 × 10−12(1 − 𝑥)8 − 1.250000003792 × 10−1(8𝑥)(1 − 𝑥)7

− 2.678571417154 × 10−1(28𝑥2)(1 − 𝑥)6 − 4.315476177733

× 10−1(56𝑥3)(1 − 𝑥)5 − 6.196428735721 × 10−1(70𝑥4)(1 − 𝑥)4

− 8.364582870416 × 10−1(56𝑥5)(1 − 𝑥)3

− 1.087252101780(28𝑥6)(1 − 𝑥)2 − 1.378496618155(8𝑥7)(1 − 𝑥)

− 1.718281786193𝑥8 

Furthermore, after running the programs, table (10) shows a comparison between the exact 

solution 𝑦(𝑥) and the approximate solution 𝑦8(𝑥) and shows the least square errors, running 

times and residual equations of the values  𝑅8(𝑥; 𝐶̅)are also included by applying formula (3.5) 

for three different values 𝑀 ̅̅ ̅ and the approximation expression, the following approximate 

formulas are obtained for 𝑀 ̅̅ ̅  =  (4, 8, 10): 

Table 10. A comparison between the exact solution and the approximate solution 

x Exact 𝑀 ̅̅ ̅ = 4 𝑀 ̅̅ ̅ = 8 𝑀 ̅̅ ̅ = 10 

0 0 −4.42550789996 ×

10−10  

1.30477648228 × 10−14 3.79595900243 × 10−12 

0.

1 

−0.1051709181 -0.105170908948 -0.105170918057 -0.105170918066 

0.

2 

−0.2214027581 -0.221402741843 -0.22140275815 -0.221402758201 

0.

3 

−0.3498588076 -0.349858724607 -0.349858807573 -0.349858807886 

0.

4 

−0.4918246976 -0.491824138576 -0.491824696564 -0.491824698055 

0.

5 

−0.6487212707 -0.648718625855 -0.648721261726 -0.648721270984 

0. −0.8221188004 -0.822109384969 -0.822118753465 -0.822118800486 
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6 

0.

7 

−1.013752707 -1.01372528933 -1.0137525195 -1.01375270695 

0.

8 

−1.225540928 -1.22547198959 -1.22554030616 -1.22554092516 

0.

9 

−1.459603111 -1.45944808977 -1.45960132882 -1.45960309822 

1 −1.718281828 1.71796251624 -1.71827727248 -1.71828178619 

𝐿. 𝑆. 𝐸 1.315922195842451

× 10−7 

2.43585838154564

× 10−11 

1.96545936985566

× 10−15 

𝑅8 = 𝐿. 𝑆. 𝐸𝑦 7.70802276676131

× 10−18 

3.57011757183415

× 10−27 

5.66771539696522

× 10−22 

𝑅. 𝑇𝑖𝑚𝑒/𝑆𝑒𝑐 1.7613470554351807 1.7685182094573975 1.7981958389282227 

 

 
Figure 7. Exact and approximate solution of Test Example 4.3 

 

Table (11) shows the absolute error values for a numerical method applied with different values 

of 𝑀̅  =  4, 8, 10. As 𝑀̅ increases, the absolute error generally decreases, suggesting that the 

method becomes more accurate. This highlights the relationship between the parameter 𝑀̅ and 

the precision of the results. 
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Figure 8. Absolute error of Test Example 4.3 

 

5. CONCLUSIONS 

 In this study, under practical circumstances, Fredholm integro-fractional differential equations 

(FIFDEs-Delays) of delay types with variable coefficients are solved using the Bernstein 

polynomial approximation. Good results were obtained by relying solely on the computer 

program that was built and included multiple examples for illustration. Additionally, tabular 

forms of the running time, least square error, and least square error function 𝑦(𝑥) were provided. 

thus the following points have been identified.  

1. The good results are determined by the number of approximate parts of the integral 𝑅 (the 

exact solution of 𝑦𝑁(𝑥) if 𝑅 is a large number) and the number of polynomials 𝑁 that are 

obtained with a suitable number of 𝑁̅̅̅. 

Table 11. Absolute error of the method with respective different values 𝑀̅ 

  Absolute error 

x Exact 𝑀̅ = 4 𝑀̅ = 8 𝑀̅ = 10 

0 0 4.42551 × 10−10 1.30478 × 10−14 3.79596 × 10−12 

0.1 −0.1051709181 9.12795 × 10−9 1.88477 × 10−11 9.64771 × 10−12 

0.2 −0.2214027581 1.63175 × 10−8 1.05699 × 10−11 4.12302 × 10−11 

0.3 −0.3498588076 8.29692 × 10−8 3.00321 × 10−12 3.10297 × 10−10 

0.4 −0.4918246976 5.59066 × 10−7 1.07737 × 10−9 4.1373 × 10−10 

0.5 −0.6487212707 2.64484 × 10−6 8.97463 × 10−9 2.84272 × 10−10 

0.6 −0.8221188004 9.41542 × 10−6 4.6926 × 10−8 9.55909 × 10−11 

0.7 −1.013752707 2.74181 × 10−5 1.87969 × 10−7 5.21477 × 10−10 

0.8 −1.225540928 6.89389 × 10−5 6.22329 × 10−7 3.32947 × 10−9 

0.9 −1.459603111 1.55021 × 10−4 1.78233 × 10−6 1.29349 × 10−8 

1 −1.718281828 3.19312 × 10−4 4.55598 × 10−6 4.2266 × 10−8 
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2. In a situation with Mittag-Leffler terms (see Test Example 4.3), the number of Mittag-

Leffler words and the selection of the aforementioned factors determine how accurate the 

findings are. In order to save time, we converted the infinite Mittag-Leffler terms into 

(4,8, and 10) terms.      
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 الخلاصة
 المقدمة:

ة لم التكامليفريدهو  قدم هذه الدراسة إطارًا جديدًا مفيدًا يستخدم متعددات حدود برنشتاين لتحسين تقنية التجميع الطيفي لحل معادلات
( عدديًا في ظل FIFDEs-Delaysالتفاضلية ذات الرتب الكسرية ذات المعاملات المتغيرة وتأخير ثابت متعدد الأوقات )

 الظروف الحدودية
 

 :طرق العمل
 م تقنيةيُفترض أن تكون الحلول التقريبية على شكل متسلسلة حدود برنشتاين المقطوعة. يعتمد هذا النهج الجديد على استخدا

 المصفوفة لتحويل معادلة العرض مع الشروط إلى نظام معادلات خطي جبري ذي معاملات برنشتاين مجهولة.
 :اجاتالاستنت

فترض. حل المُ يُحسّن هذا النهج دقة الحلول المُتوصل إليها، ويُبسّط المسألة في الوقت نفسه. يُحدد حل هذا النظام معاملات ال
 يرتسك-إضافةً إلى ذلك، قُيّمت مُعاملات التكامل المُستخدمة في هذه التقنية كمّيًا باستخدام صيغة كلينشو

 
وتو، ن، مشتقة كابهولم التكاملية، المشتقة الكسرية، أنواع التأخير الثابت، متعددة حدود برنشتايمعادلات فريد الكلمات المفتاحية:

 .نقاط التجميع القياسية تقنية المصفوفة،
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