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ABSTRACT  

Fractional differential equations (FDEs) play a fundamental role in modeling complex physical, biological, 

and engineering phenomena characterized by memory effects and nonlocal dynamics. This paper presents 

an efficient numerical framework based on a fractional Hermite interpolation formula for solving FDEs. 

The proposed method extends the classical Hermite interpolation scheme to fractional calculus by 

embedding fractional derivatives within the interpolation structure, thereby improving approximation 

precision and convergence behavior. To enhance computational performance, optimized interpolation 

nodes and refined fractional derivative approximations are introduced, effectively reducing truncation 

errors and improving numerical stability. The method is systematically formulated and implemented in a 

computational environment, with numerical experiments verifying its robustness and accuracy. Results 

confirm that the proposed scheme achieves superior stability and precision compared with conventional 

numerical techniques, demonstrating its potential for broad application in the solution of fractional-order 

models across scientific and engineering domains.  

Keywords: Fractional differential equations; Hermite interpolation; numerical methods; interpolation 

formula; computational efficiency; fractional derivatives; numerical approximation. 

1 INTRODUCTION 

Fractional calculus generalizes classical calculus by extending the concepts of differentiation and 

integration to non-integer (fractional) orders [1-4]. Unlike traditional integer-order derivatives, fractional 

derivatives intrinsically include memory and hereditary effects, enabling them to describe systems whose 

current states depend on the entire history of their evolution. These properties make fractional calculus a 

powerful mathematical framework for modeling complex processes in physics, engineering, biology, and 

finance. Several definitions of fractional differentiation exist, most notably the Riemann–Liouville, Caputo, 

and Grünwald–Letnikov formulations [5-8]. Each definition provides unique analytical and computational 
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advantages depending on the boundary conditions and smoothness of the problem. The flexibility and 

physical relevance of these formulations have positioned fractional differential equations (FDEs) at the core 

of modern mathematical modeling [9-12]. 

FDEs have been successfully employed to describe memory-dependent dynamics in viscoelastic materials, 

anomalous diffusion, control systems, and complex biological networks [13-18]. Although differential 

equations (DEs) include memory and hereditary properties, they provide a more accurate representation of 

many systems with motion [19].  Because fractional derivatives are nonlocal, they are more difficult to 

solve numerically, despite their advantages. Recent research has focused on developing hybrid numerical 

approaches that combine the stability and smoothness of spline-based approximations with the flexibility 

of algebra [20, 21]. 

However, their nonlocal nature often introduces computational challenges when deriving accurate 

numerical solutions of the fractional calculus [22, 23]. Classical numerical schemes-originally developed 

for integer-order equations—are often limited by high computational cost and reduced stability when 

extended to fractional systems [24-27]. To overcome these challenges, interpolation-based numerical 

strategies have gained attention, particularly Hermite interpolation, which utilizes both function values and 

derivative information [34, 35]. These methods incorporate fractional derivatives into the interpolation 

framework, significantly enhancing approximation accuracy for FDEs. Previous works have shown that 

fractional Hermite schemes outperform classical polynomial or spline approaches in accuracy and 

convergence [36, 38]. The extension of this concept to fractional calculus—termed fractional Hermite 

interpolation—was initiated by Luchko [3] and further developed in recent studies [39]. The method 

introduces an optimized selection of interpolation nodes and utilizes refined fractional derivative 

approximations to minimize truncation errors [40]. Nonetheless, several open issues remain, including 

numerical instability, computational complexity, and limited adaptability to mixed or nonstandard 

boundary conditions [41-43]. In this work, we propose an improved fractional Hermite interpolation 

framework designed to enhance both computational efficiency and numerical stability. The proposed 

formulation also extends applicability to a wider class of FDEs, ensuring robust accuracy under diverse 

initial and boundary conditions. Validation through comprehensive numerical experiments demonstrates 

superior performance over existing interpolation-based fractional numerical methods. 

2 BASIC DEFINITIONS 

This section introduces the mathematical background necessary for constructing the proposed method, 

including interpolation theory, fractional derivatives, and relevant norms. 

2.1 Interpolation and Fractional Differential Equations 

Interpolation provides a mechanism to estimate unknown function values from a known discrete dataset. In 

the context of FDEs, interpolation techniques are extended to incorporate fractional derivatives, giving rise 

to fractional Hermite interpolation [44, 45]. Fractional differential equations involve derivatives of non-

integer order and are used to describe systems exhibiting memory and hereditary effects. Their numerical 

solution requires specialized algorithms capable of handling fractional operators with nonlocal dependence. 

2.1.1 Hermite Interpolation for Integer Order 

Hermite interpolation approximates a smooth function by using both its values and derivative values at 

given nodes. Given distinct points 𝑥0, 𝑥1, … , 𝑥𝑛 with 𝑓(𝑥𝑖) and 𝑓′(𝑥𝑖) known, the Hermite interpolation 

polynomial 𝐻𝑛(𝑥) satisfies:  
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 𝐻𝑛(𝑥𝑖) = 𝑓(𝑥𝑖),    𝑖 = 0,1,… , 𝑛, (1) 

 𝐻′𝑛(𝑥𝑖) = 𝑓′(𝑥𝑖),    𝑖 = 0,1,… , 𝑛. (2) 

By incorporating derivative information, this scheme achieves higher accuracy than standard polynomial 

interpolation [2, 9]. 

2.2 Fractional Derivatives 

Fractional derivatives extend differentiation to arbitrary real (or even complex) orders. The most widely 

used formulations are those of Riemann–Liouville and Caputo[19-23]. 

2.2.1 Riemann–Liouville Derivative 

The Riemann–Liouville fractional derivative of order 𝛼 is defined as [1]:  

 𝐷𝛼𝑓(𝑥) =
1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫
𝑥

𝑎
(𝑥 − 𝑡)𝑛−𝛼−1𝑓(𝑡) 𝑑𝑡,    𝑛 − 1 < 𝛼 < 𝑛. (3) 

2.2.2 Caputo Derivative 

The Caputo fractional derivative of order 𝛼 is given by:  

  𝐶𝐷𝛼𝑓(𝑥) =
1

Γ(𝑛−𝛼)
∫
𝑥

𝑎
(𝑥 − 𝑡)𝑛−𝛼−1𝑓(𝑛)(𝑡) 𝑑𝑡. (4) 

2.3 Fractional Taylor Series 

 

The fractional Taylor series [4] generalizes the classical expansion to fractional-order derivatives:  

 𝑓(𝑥) = ∑∞𝑛=0
(𝐷𝛼𝑓)(𝑥0)

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑛𝛼 . (5) 

 This formulation allows fractional-order function reconstruction based on non-integer derivative data 

2.4 Maximum Norm 

The maximum norm (or supremum norm) measures the greatest absolute deviation of a function over a 

given domain [5]:  

 ∥ 𝑓 ∥∞= sup
𝑥∈Ω

|𝑓(𝑥)|. (6 

3 FORMULATION OF THE METHOD 

The proposed method constructs a fractional Hermite interpolation polynomial to approximate solutions of 

FDEs. This section details the derivation of the numerical scheme. 

3.1 Approximation of Fractional Derivatives 

To compute fractional derivatives at selected interpolation nodes, we adopt a hybrid finite-difference and 

fractional Taylor expansion strategy following Tenreiro Machado [14] and later computational refinements 

[24-27]. For a smooth function 𝑓 on [𝑎, 𝑏], its fractional derivative at node 𝑥𝑖 is approximated by:  

 𝐷𝑥
𝛼𝑓(𝑥𝑖) ≈

1

ℎ𝛼
∑𝑖𝑘=0 (−1)

𝑘 (
𝛼
𝑘
)𝑓(𝑥𝑖−𝑘), (7) 
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 where (
𝛼
𝑘
) =

Γ(𝛼+1)

Γ(𝑘+1)Γ(𝛼−𝑘+1)
 is the generalized binomial coefficient. This discrete formulation ensures 

computational efficiency and can be implemented directly in MATLAB. 

3.2 Construction of the Fractional Hermite Interpolant 

With 𝑓(𝑥𝑖) and their corresponding fractional derivatives known, the fractional Hermite interpolation 

polynomial is defined as [41- 43]:  

 𝐻𝑛(𝑥) = ∑
𝑛
𝑖=0 [𝑓(𝑥𝑖) 𝐿𝑖(𝑥) + 𝐷𝑥

𝛼𝑓(𝑥𝑖) 𝑀𝑖(𝑥)], (8) 

 with the conditions:  

 𝐿𝑖(𝑥𝑗) = 𝛿𝑖𝑗 ,    𝐷𝑥
𝛼𝐿𝑖(𝑥𝑗) = 0,    𝑀𝑖(𝑥𝑗) = 0,    𝐷𝑥

𝛼𝑀𝑖(𝑥𝑗) = 𝛿𝑖𝑗 . (9) 

 These properties ensure that 𝐻𝑛(𝑥) simultaneously interpolates both the function and its fractional 

derivative at each node, thus generalizing the classical Hermite conditions to the fractional domain. 

3.3 Theorem 1:  Let 𝛂 ∈ ℝ+, 𝐧 ∈ ℕ, and 𝒇(𝒙) be a function such that 𝑫𝜶𝒇(𝒙) is continuous on 
[𝒂, 𝒃]. Given mesh points 𝒂 = 𝒙𝟎 < 𝒙𝟏 < ⋯ < 𝒙𝒏 = 𝒃, the Fractional Hermite interpolation 

𝑯𝒎(𝒙) satisfying:    

 𝑯𝒎(𝒙𝒊) = 𝒇(𝒙𝒊) for all 𝒊 = 𝟎, 𝟏,… , 𝒏, and   𝑫𝜶𝑯𝒎(𝒙𝒊) = 𝑫
𝜶𝒇(𝒙𝒊) for all 𝒊 = 𝟎, 𝟏,… , 𝒏,  

 can be expressed as:  

𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[(1 −
𝐷𝛼ℓ𝑖(𝑥)

2|𝑥=𝑥𝑖
𝛤(𝛼 + 1)

(𝑥 − 𝑥𝑖)
𝛼) ℓ𝑖(𝑥)

2𝑓(𝑥𝑖) +
(𝑥 − 𝑥𝑖)

𝛼

𝛤(𝛼 + 1)
ℓ𝑖(𝑥)

2𝐷𝛼𝑓(𝑥𝑖)], 

where ℓ𝑖(𝑥) denotes the Lagrange basis polynomial corresponding to the node 𝑥𝑖. 

Proof. The unknown coefficients 𝑎0, 𝑎1, 𝑏0, and 𝑏1 of:  

𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[(𝑎0 + 𝑎1(𝑥 − 𝑥𝑖)
𝛼)ℓ𝑖(𝑥)

2𝑓(𝑥𝑖) + (𝑏0 + 𝑏1(𝑥 − 𝑥𝑖)
𝛼)ℓ𝑖(𝑥)

2𝐷𝛼𝑓(𝑥𝑖)], 

are determined by enforcing the interpolation conditions on Hm(x) and its fractional derivative 

𝐷𝛼𝐻𝑚(𝑥) at the nodes xi, 

Assume the form of the interpolant as:  

𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[ℎ𝑖(𝑥) + ℎ𝑖
∗(𝑥)], 

where the individual terms are:  

ℎ𝑖(𝑥) = (𝑎0 + 𝑎1(𝑥 − 𝑥𝑖)
𝛼)ℓ𝑖(𝑥)

2𝑓(𝑥𝑖)         &        ℎ𝑖
∗(𝑥) = (𝑏0 + 𝑏1(𝑥 −

𝑥𝑖)
𝛼)ℓ𝑖(𝑥)

2𝐷𝛼𝑓(𝑥𝑖). 

At 𝑥 = 𝑥𝑖, the terms become: ℎ𝑖(𝑥𝑖) = 𝑎0ℓ𝑖(𝑥𝑖)
2𝑓(𝑥𝑖) = 𝑎0𝑓(𝑥𝑖) 𝑎𝑛𝑑 
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  ℎ𝑖
∗(𝑥𝑖) = 𝑏0ℓ𝑖(𝑥𝑖)

2𝐷𝛼𝑓(𝑥𝑖) = 𝑏0𝐷
𝛼𝑓(𝑥𝑖). 

For the condition 𝐻𝑚(𝑥𝑖) = 𝑓(𝑥𝑖), we require: 𝑎0𝑓(𝑥𝑖) + 𝑏0𝐷
𝛼𝑓(𝑥𝑖) = 𝑓(𝑥𝑖). 

Compute the α-th derivative of 𝐻𝑚(𝑥) at 𝑥𝑖. First, consider the derivatives of the individual terms:  

The values of coefficients a0, a1, b0, b1 into the expression for Hm(x): 

𝑎0 = 1 ,    𝑏0 = 0 ,    𝑎1 = −
𝐷𝛼ℓ𝑖(𝑥)

2|𝑥=𝑥𝑖
𝛤(𝛼 + 1)

,    𝑎𝑛𝑑    𝑏1 =
1

𝛤(𝛼 + 1)
 

 yields the stated results via algebraic manipulation and properties of the Gamma function and:  

𝐻𝑚(𝑥) = ∑

𝑛

𝑖=0

[(1 −
𝐷𝛼ℓ𝑖(𝑥)

2|𝑥=𝑥𝑖
𝛤(𝛼 + 1)

(𝑥 − 𝑥𝑖)
𝛼) ℓ𝑖(𝑥)

2𝑓(𝑥𝑖) +
(𝑥 − 𝑥𝑖)

𝛼

𝛤(𝛼 + 1)
ℓ𝑖(𝑥)

2𝐷𝛼𝑓(𝑥𝑖)]. 

 

Lemma 1  Let 𝐻𝑚(𝑥) be the Fractional Hermite interpolating polynomial defined by Theorem 1 

where ℓ𝑖(𝑥) are the Lagrange basis polynomials, then the Riemann-Liouville fractional derivative 

Dβ of order β > 0 is given by:  

𝐷𝛽𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[𝑓(𝑥𝑖)𝐷
𝛽ℓ𝑖(𝑥)

2 −
𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖
𝛤(𝛼 + 1)

𝑓(𝑥𝑖)∑

∞

𝑘=0

(
𝛽
𝑘
)

𝛤(𝛼 + 1)

𝛤(𝛼 − 𝑘 + 1)
(𝑥 − 𝑥𝑖)

𝛼−𝑘𝐷𝛽−𝑘ℓ𝑖(𝑥)
2

+
𝐷𝛼𝑓(𝑥𝑖)

𝛤(𝛼 + 1)
∑

∞

𝑘=0

(
𝛽
𝑘
)

𝛤(𝛼 + 1)

𝛤(𝛼 − 𝑘 + 1)
(𝑥 − 𝑥𝑖)

𝛼−𝑘𝐷𝛽−𝑘ℓ𝑖(𝑥)
2] 

Proof:  To compute the fractional derivative Dβ of order β ∈ ℝ+ for the given Fractional Hermite 

interpolation formula, we proceed as follows. For clarity, we assume the Riemann-Liouville 

fractional derivative definition, which generalizes integer-order differentiation to non-integer 

orders. The formula is: 

𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[(1 −
𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖
𝛤(𝛼 + 1)

(𝑥 − 𝑥𝑖)
𝛼) ℓ𝑖(𝑥)

2𝑓(𝑥𝑖)
⏟                            

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒𝑡𝑒𝑟𝑚

+
(𝑥 − 𝑥𝑖)

𝛼

𝛤(𝛼 + 1)
ℓ𝑖(𝑥)

2𝐷𝛼𝑓(𝑥𝑖)
⏟                

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑡𝑒𝑟𝑚

]. 

    • ℓ𝑖(𝑥) is a polynomial, so ℓ𝑖(𝑥)
2 is also a polynomial.  

    • (𝑥 − 𝑥𝑖)
𝛼 is a power function. For fractional derivatives, we use the Riemann-Liouville 

formula:  

𝐷𝛽(𝑥 − 𝑥𝑖)
𝛾 =

𝛤(𝛾 + 1)

𝛤(𝛾 − 𝛽 + 1)
(𝑥 − 𝑥𝑖)

𝛾−𝛽 ,    𝛾 ≻ 1. 

Now to compute DβHm(x) term by term: 

      Term 1: 𝐷𝛽[ℓ𝑖(𝑥)
2𝑓(𝑥𝑖)],  
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        - Since 𝑓(𝑥𝑖) is a constant, 𝐷𝛽[ℓ𝑖(𝑥)
2𝑓(𝑥𝑖)] = 𝑓(𝑥𝑖)𝐷

𝛽ℓ𝑖(𝑥)
2 (8) 

        - If ℓ𝑖(𝑥) is a degree-m polynomial, then 𝐷𝛽ℓ𝑖(𝑥)
2 = 0 for β > 2m.  

     Term 2: 𝐷𝛽 [
𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖

𝛤(𝛼+1)
(𝑥 − 𝑥𝑖)

𝛼ℓ𝑖(𝑥)
2𝑓(𝑥𝑖)],    where   𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖 is a constant.  

        - we apply the generalized Leibniz rule[1] for fractional derivatives :  

𝐷𝛽[(𝑥 − 𝑥𝑖)
𝛼ℓ𝑖(𝑥)

2] = ∑

∞

𝑘=0

(
𝛽
𝑘
)𝐷𝑘(𝑥 − 𝑥𝑖)

𝛼 ⋅ 𝐷𝛽−𝑘ℓ𝑖(𝑥)
2. (9) 

Using the Riemann-Liouville derivative of power functions:  

 𝐷𝑘(𝑥 − 𝑥𝑖)
𝛼 =

𝛤(𝛼+1)

𝛤(𝛼−𝑘+1)
(𝑥 − 𝑥𝑖)

𝛼−𝑘 

 Therefore: we obtain that: 𝐷𝛽𝐻𝑚(𝑥) = ∑
𝑛
𝑖=0 [𝑓(𝑥𝑖)𝐴𝑖(𝑥) + 𝐷

𝛼𝑓(𝑥𝑖)𝐵𝑖(𝑥)] (10) 

𝐴𝑖(𝑥) = 𝐷
𝛽ℓ𝑖(𝑥)

2 −
𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖

𝛤(𝛼+1)
∑∞𝑘=0 (

𝛽
𝑘
)

𝛤(𝛼+1)

𝛤(𝛼−𝑘+1)
(𝑥 − 𝑥𝑖)

𝛼−𝑘𝐷𝛽−𝑘ℓ𝑖(𝑥)
2 (11) 

 𝐵𝑖(𝑥) =
1

𝛤(𝛼+1)
∑∞𝑘=0 (

𝛽
𝑘
)

𝛤(𝛼+1)

𝛤(𝛼−𝑘+1)
(𝑥 − 𝑥𝑖)

𝛼−𝑘𝐷𝛽−𝑘ℓ𝑖(𝑥)
2 

When 𝛽 = 𝛼 and 𝑥 = 𝑥𝑖, the fractional derivative of the Hermite interpolant simplifies to: 

𝐷𝛼𝐻𝑚(𝑥𝑖) = 𝐷
𝛼𝑓(𝑥𝑖) , By using the cardinal property ℓ𝑖(𝑥𝑗) = 𝛿𝑖𝑗. 

 

Lemma 2: (Existence and Uniqueness of Hermite Interpolation with Fractional Derivatives)  

Let {𝑥𝑖}𝑖=0
𝑛  be distinct uniformly spaced nodes in the interval [𝑎, 𝑏], and let 𝑓 be a function such 

that its fractional derivative 𝐷𝛼𝑓 of order 𝛂 ∈ ℝ+ exists at each 𝑥𝑖 and continuous on [𝑎, 𝑏] Then 

there exists a unique “exists uniquely[28, 37]” interpolating function 𝐻𝑚(𝑥) of the form:  

𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[(1 −
𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖
𝛤(𝛼 + 1)

(𝑥 − 𝑥𝑖)
𝛼) ℓ𝑖(𝑥)

2𝑓(𝑥𝑖) +
(𝑥 − 𝑥𝑖)

𝛼

𝛤(𝛼 + 1)
ℓ𝑖(𝑥)

2𝐷𝛼𝑓(𝑥𝑖)], 

 Where ℓ𝑖(𝑥) is the Lagrange basis polynomial corresponding to node 𝑥𝑖,  𝑓(𝑥𝑖) is the value of the 

function at 𝑥𝑖, 𝐷
𝛼𝑓(𝑥𝑖) denotes the fractional derivative of order 𝛼 at 𝑥𝑖.  

 Proof: Fisrt we define the functions as follows:  

 𝜙𝑖(𝑥) = (1 −
𝐷𝛼(ℓ𝑖(𝑥)

2)

𝛤(𝛼+1)
(𝑥 − 𝑥𝑖)

𝛼) ℓ𝑖(𝑥)
2, (12) 

 𝜓𝑖(𝑥) =
(𝑥−𝑥𝑖)

𝛼

𝛤(𝛼+1)
ℓ𝑖(𝑥)

2. (13) 
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These satisfy the interpolation conditions:  

 𝜙𝑖(𝑥𝑗) = 𝛿𝑖𝑗 , 𝜓𝑖(𝑥𝑗) = 0, (14) 

 𝐷𝛼𝜙𝑖(𝑥𝑗) = 0, 𝐷
𝛼𝜓𝑖(𝑥𝑗) = 𝛿𝑖𝑗 . (15) 

To show that 𝜙𝑖(𝑥) and 𝜓𝑖(𝑥) form a complete basis for the space of Hermite interpolants, we 

follow these steps. 

From the above conditions, the linear independence [29] of these functions: {𝜙𝑖(𝑥), 𝜓𝑖(𝑥)} 

Now we must to show that these functions are independent so we define the evaluation matrix A 

with rows indexed by interpolation points 𝑥𝑗 and columns indexed by basis functions:  

 A =

[
 
 
 
 
 
 
 
 
ϕ0(x0) ϕ1(x0) … ϕn(x0) ψ0(x0) ψ1(x0) … ψn(x0)

ϕ0(x1) ϕ1(x1) … ϕn(x1) ψ0(x1) ψ1(x1) … ψn(x1)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
ϕ0(xn) ϕ1(xn) … ϕn(xn) ψ0(xn) ψ1(xn) … ψn(xn)

Dαϕ0(x0) Dαϕ1(x0) … Dαϕn(x0) Dαψ0(x0) Dαψ1(x0) … Dαψn(x0)

Dαϕ0(x1) Dαϕ1(x1) … Dαϕn(x1) Dαψ0(x1) Dαψ1(x1) … Dαψn(x1)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
Dαϕ0(xn) Dαϕ1(xn) … Dαϕn(xn) Dαψ0(xn) Dαψ1(xn) … Dαψn(xn)]

 
 
 
 
 
 
 
 

. 

From the conditions in equations (14) and (5) and the matrix A takes the block diagonal form:  

 A = [
I 0
0 I

], 

where I is the identity matrix. 

Since A is block diagonal, its determinant is the product of the determinants of the identity blocks:  

 det(A) = det(I) ⋅ det(I) = 1 × 1 = 1 ≠ 0. 

Since the determinant is nonzero, the basis functions ϕi(x) and ψi(x), is linearly independent. 

The functions:   ϕi(x) and ψi(x) Span [29] the Hermite Interpolation Space. 

The Hermite interpolation problem requires constructing a function H(x) that satisfies both 

function values and derivative conditions at given points:  

 𝐻(𝑥𝑗) = 𝑓𝑗 , 𝐷
𝛼𝐻(𝑥𝑗) = 𝑔𝑗. (16) 

We use the previously defined basis functions:  

 𝜙𝑖(𝑥) = (1 −
𝐷𝛼(ℓ𝑖(𝑥)

2)

𝛤(𝛼+1)
(𝑥 − 𝑥𝑖)

𝛼) ℓ𝑖(𝑥)
2, (17) 

 𝜓𝑖(𝑥) =
(𝑥−𝑥𝑖)

𝛼

𝛤(𝛼+1)
ℓ𝑖(𝑥)

2. (18) 

These functions satisfy the interpolation conditions:  
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 𝜙𝑖(𝑥𝑗) = 𝛿𝑖𝑗 , 𝜓𝑖(𝑥𝑗) = 0, (19) 

 𝐷𝛼𝜙𝑖(𝑥𝑗) = 0, 𝐷
𝛼𝜓𝑖(𝑥𝑗) = 𝛿𝑖𝑗 . (20) 

Then, the general Hermite interpolating function is written as:  

𝐻(𝑥) =∑

𝑛

𝑖=0

𝑓𝑖𝜙𝑖(𝑥) +∑

𝑛

𝑖=0

𝑔𝑖𝜓𝑖(𝑥). 

By construction:  

 𝐻(𝑥𝑗) = 𝑓𝑗 , (21) 

 𝐷𝛼𝐻(𝑥𝑗) = 𝑔𝑗. (22) 

 This ensures that 𝐻(𝑥) satisfies the conditions of Hermite interpolation. 

Substitute 𝑥 = 𝑥𝑖 into 𝐻(𝑥). By construction:  

𝐻𝑚(𝑥𝑖) =∑

𝑛

𝑗=0

[(1 −
𝐷𝛼ℓ𝑗(𝑥𝑖)

2|𝑥=𝑥𝑗

𝛤(𝛼 + 1)
(𝑥𝑖 − 𝑥𝑗)

𝛼) ℓ𝑗(𝑥𝑖)
2𝑓(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
𝛼

𝛤(𝛼 + 1)
ℓ𝑗(𝑥𝑖)

2𝐷𝛼𝑓(𝑥𝑗)] 

                        = 𝑓(𝑥𝑖)(𝑠𝑖𝑛𝑐𝑒: ℓ𝑗(𝑥𝑖) = 𝛿𝑖𝑗).           (23) 

 Similarly, applying Dα to 𝐻𝑚(𝑥) and evaluating at 𝑥𝑖 yields 𝐷𝛼𝐻𝑚(𝑥𝑖) = 𝐷
𝛼𝑓(𝑥𝑖).  

From Lemma 3.1, we conclude that:     𝐻𝑚(𝑥𝑖) = 𝑓(𝑥𝑖)    &     𝐷𝛼𝐻𝑚(𝑥𝑖) = 𝐷
𝛼𝑓(𝑥𝑖) 

According to uniqueness in [28], we suppose two interpolants 𝐻𝑚
(1)(𝑥) and 𝐻𝑚

(2)(𝑥) satisfy the 

conditions. Define 𝐸(𝑥) = 𝐻𝑚
(1)(𝑥) − 𝐻𝑚

(2)(𝑥). Then:  

 𝐸(𝑥𝑖) = 0, ∀𝑖 ⟹ 𝐷𝛼𝐸(𝑥𝑖) = 0∀𝑖. 

 Since 𝐸(𝑥) is a linear combination of basis functions vanishing at all nodes with zero fractional 

derivatives, 𝐸(𝑥) ≡ 0. Thus, 𝐻𝑚
(1)(𝑥) = 𝐻𝑚

(2)(𝑥).  

  Since 𝜙𝑖(𝑥) and 𝜓𝑖(𝑥) are linearly independent and their span contains all possible Hermite 

interpolants, they form a basis [29] for the Hermite interpolation space. Thus, they span the space 

of Hermite interpolating polynomials. 

Where 𝐻𝑚(𝑥) is the unique function satisfying 𝐻𝑚(𝑥𝑖) = 𝑓(𝑥𝑖) and 𝐷𝛼𝐻𝑚(𝑥𝑖) = 𝐷
𝛼𝑓(𝑥𝑖) for all 

i = 0,1, … , n. 

The interpolation problem imposes 2(𝑛 + 1) conditions (function and derivative values at 𝑛 + 1 

nodes). The formula 𝐻𝑚(𝑥) is constructed using 2(𝑛 + 1) basis functions:  

 𝜙𝑖(𝑥) = (1 −
𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖

𝛤(𝛼+1)
(𝑥 − 𝑥𝑖)

𝛼) ℓ𝑖(𝑥)
2,    𝜓𝑖(𝑥) =

(𝑥−𝑥𝑖)
𝛼

𝛤(𝛼+1)
ℓ𝑖(𝑥)

2. 
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These form a basis for the space of functions interpolating 𝑓(𝑥𝑖) and 𝐷𝛼𝑓(𝑥𝑖). 

 At 𝑥 = 𝑥𝑖, 𝜙𝑖(𝑥𝑗) = 𝛿𝑖𝑗 and 𝜓𝑖(𝑥𝑗) = 0. - For the derivatives, 𝐷𝛼𝜙𝑖(𝑥𝑗) = 0 and 𝐷𝛼𝜓𝑖(𝑥𝑗) =

𝛿𝑖𝑗. - The Kronecker delta properties ensure linear independence: no non-trivial combination of ϕi 

and ψi can vanish at all nodes or their derivatives. 

The coefficients of 𝐻𝑚(𝑥) solve the linear system:  

 {
𝐻𝑚(𝑥𝑖) = 𝑓(𝑥𝑖),

𝐷𝛼𝐻𝑚(𝑥𝑖) = 𝐷
𝛼𝑓(𝑥𝑖).

 

The basis functions ϕi, ψi generate a Vandermonde-like matrix with a zero determinant due to 

linear independence, ensuring a unique solution. 

Lemma 3: (Error Analysis and Consistency)  

Let 𝐻𝑚(𝑥) be the fractional Hermite interpolant of a sufficiently smooth function 𝑓(𝑥) over an interval 

[𝑎, 𝑏] using nodes {𝑥𝑖}𝑖=0
𝑛 . Then the interpolation error: 

 𝑒(𝑥) = 𝑓(𝑥) − 𝐻𝑚(𝑥) satisfies the following properties:   

Peano Kernel Representation [31, 32]: There exists a kernel function 𝐾(𝑥, 𝑡) such that  

𝑒(𝑥) = ∫
𝑏

𝑎

𝐾(𝑥, 𝑡)𝐷(𝑛+1)(1+𝛼)𝑓(𝑡)𝑑𝑡, 

where ℒ𝑥[𝑓] = 𝑒(𝑥) is the interpolation error functional. 

Error Bound [28, 31]: The kernel 𝐾(𝑥, 𝑡) satisfies the inequality  

|𝐾(𝑥, 𝑡)| ≤
(𝑥 − 𝑡)+

(𝑛+1)(1+𝛼)−1

Γ((𝑛 + 1)(1 + 𝛼))
, 

leading to the uniform error estimate  

∥ 𝑒 ∥∞≤
∥ 𝐷(𝑛+1)(1+𝛼)𝑓 ∥∞ (𝑏 − 𝑎)

(𝑛+1)(1+𝛼)

Γ((𝑛 + 1)(1 + 𝛼))
. 

Consistency with Classical Interpolation [33]:   

- As 𝛼 → 0, the Caputo derivative 𝐷𝛼𝑓(𝑥𝑖) reduces to 𝑓(𝑥𝑖), and the interpolation formula reduces to 

standard Lagrange interpolation. 

- For 𝛼 = 1, the fractional Hermite interpolant coincides [15, 32] with the classical Hermite interpolation, 

confirming consistency. 

Proof. We prove each part of the lemma: 

Peano Kernel Representation [13, 31]. The error functional is defined as: 

ℒ𝑥[𝑓] = 𝑓(𝑥) − 𝐻𝑚(𝑥) = 𝑒(𝑥). 
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By the generalized Peano kernel theorem[31] (adapted to fractional order derivatives), this error can be 

represented as:  

𝑒(𝑥) = ∫
𝑏

𝑎

𝐾(𝑥, 𝑡)𝐷(𝑛+1)(1+𝛼)𝑓(𝑡)𝑑𝑡, 

where 𝐾(𝑥, 𝑡) is the Peano kernel associated with the interpolation operator. 

Kernel Bound [28, 32]. Using the properties of the Peano kernel, we have the bound:  

|𝐾(𝑥, 𝑡)| ≤
(𝑥 − 𝑡)+

(𝑛+1)(1+𝛼)−1

Γ((𝑛 + 1)(1 + 𝛼))
. 

Hence, the interpolation error satisfies:  

|𝑒(𝑥)| ≤ ∫
𝑏

𝑎

|𝐾(𝑥, 𝑡)| ⋅ |𝐷(𝑛+1)(1+𝛼)𝑓(𝑡)|𝑑𝑡 ≤∥ 𝐷(𝑛+1)(1+𝛼)𝑓 ∥∞ ∫
𝑏

𝑎

|𝐾(𝑥, 𝑡)|𝑑𝑡. 

Computing the integral of the kernel bound yields:  

∥ 𝑒 ∥∞≤
∥ 𝐷(𝑛+1)(1+𝛼)𝑓 ∥∞ (𝑏 − 𝑎)

(𝑛+1)(1+𝛼)

Γ((𝑛 + 1)(1 + 𝛼) + 1)
. 

Hence we conluded the error bound: 

𝐸(𝑓)(𝑥) = |𝑓(𝑥) − 𝐻𝑚(𝑥)| =
𝑓((𝑛+1)(1+𝛼))(𝜉)

((𝑛 + 1)(1 + 𝛼))!
∏

𝑛

𝑖=0

(𝑥 − 𝑥𝑖)
1+𝛼, 𝜉 ∈ [𝑎, 𝑏] 

On the other hand Let: ℎ = 𝑚𝑎𝑥|𝑥 − 𝑥𝑖| ⟹ ℎ1+𝛼 = 𝑚𝑎𝑥|𝑥 − 𝑥𝑖|
1+𝛼 ⟹ ∏𝑛

𝑖=0 (𝑥 − 𝑥𝑖)
1+𝛼 ≤

∏𝑛
𝑖=0 ℎ

1+𝛼 = ℎ(1+𝛼)(𝑛+1), 

Therefore the order of error is:  ⟹𝑂(ℎ) = ℎ(1+𝛼)(𝑛+1) 

Consistency [5]: 

Caese 1: When 𝛼 → 0, the fractional derivative 𝐷𝛼𝑓(𝑥𝑖) becomes 𝑓(𝑥𝑖), and the Hermite formula 

𝐻𝑚(𝑥) reduces to the classical Lagrange interpolating polynomial [5,31] so that: 

⟹ 𝐸(𝑓)(𝑥) =
𝑓(𝑛+1)(𝜉)

(𝑛 + 1)!
∏

𝑛

𝑖=0

(𝑥 − 𝑥𝑖), 𝜉 ∈ [𝑎, 𝑏] 

And the order of error will be:  𝑂(ℎ) = ℎ(𝑛+1). 

Case 2: When 𝛼 = 1, the fractional derivative becomes the classical derivative, and the interpolation 

structure matches that of classical Hermite interpolation [3, 9], where both function values and first 

derivatives are interpolated. In other words the formula of theorem1 will reduce to: 

𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[(1 − 2ℓ𝑖
′(𝑥𝑖)(𝑥 − 𝑥𝑖))𝑓(𝑥𝑖) + (𝑥 − 𝑥𝑖)𝑓

′(𝑥𝑖)]ℓ𝑖(𝑥)
2. 
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The error bound formula reduce to: 

⟹ 𝐸(𝑓)(𝑥) = |𝑓(𝑥) − 𝐻𝑚(𝑥)| =
𝑓(2𝑛+2)(𝜉)

(2𝑛 + 2)!
∏

𝑛

𝑖=0

(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖)
2, 𝜉 ∈ [𝑎, 𝑏] 

With it’s order of error: ⟹𝑂(ℎ) = ℎ(2𝑛+2). 

Lemma 4 (Maximum Norm of𝑯𝒎(𝒙)):  

Let 𝐻𝑚(𝑥) be the fractional Hermite interpolant of a function 𝑓(𝑥) on the interval [𝑎, 𝑏] using (𝑛 + 1) 

interpolation nodes {𝑥𝑖}𝑖=0
𝑛 . Then the maximum norm of 𝐻𝑚(𝑥) is bounded by: 

∥ 𝐻𝑚(𝑥) ∥∞≤ (𝑛 + 1)max ( sup
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)|, sup
𝑥∈[𝑎,𝑏]

|𝐷𝛼𝑓(𝑥)|). 

where 𝐷𝛼𝑓 denotes the Caputo fractional derivative of order 𝛼.  

Proof: Recall the maximum norm (or supremum norm) of a function 𝑓 over [𝑎, 𝑏] is defined as:  

 ∥ 𝑓 ∥∞= sup
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)|. 

We now estimate the maximum norm of 𝐻𝑚(𝑥) by analyzing the terms in its construction. 

Function Value Term: One part of the interpolant takes the form:  

(1 −
𝐷𝛼(ℓ𝑖(𝑥)

2)|𝑥=𝑥𝑖
Γ(𝛼 + 1)

(𝑥 − 𝑥𝑖)
𝛼)ℓ𝑖(𝑥)

2𝑓(𝑥𝑖), 

where ℓ𝑖(𝑥) is the local Lagrange basis polynomial. Since ℓ𝑖(𝑥) is a polynomial of fixed degree, its square 

and fractional derivative are bounded on [𝑎, 𝑏]. The factor (𝑥 − 𝑥𝑖)
𝛼 is also bounded as 𝑥 ∈ [𝑎, 𝑏]. Thus, 

this entire term is bounded by a constant multiple of |𝑓(𝑥𝑖)|. 

Derivative Term: Another part of the interpolant is: 
(𝑥−𝑥𝑖)

𝛼

Γ(𝛼+1)
ℓ𝑖(𝑥)

2𝐷𝛼𝑓(𝑥𝑖). 

As before, ℓ𝑖(𝑥)
2 ∈ [0,1] and (𝑥 − 𝑥𝑖)

𝛼 is bounded on [𝑎, 𝑏], so this term is also bounded by a constant 

multiple of |𝐷𝛼𝑓(𝑥𝑖)|. 

Bounding the Interpolant: Each term in the interpolant 𝐻𝑚(𝑥) is bounded by a combination of |𝑓(𝑥𝑖)| 

and |𝐷𝛼𝑓(𝑥𝑖)|. Taking the supremum of 𝐻𝑚(𝑥) over [𝑎, 𝑏] yields:  

∥ 𝐻𝑚(𝑥) ∥∞≤∑

𝑛

𝑖=0

(|𝑓(𝑥𝑖)| + |𝐷
𝛼𝑓(𝑥𝑖)|) 

Let us define:  

 𝑀𝑓 = sup
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)|,𝑀𝐷𝛼𝑓 = sup
𝑥∈[𝑎,𝑏]

|𝐷𝛼𝑓(𝑥)|. 

Then, since |𝑓(𝑥𝑖)| ≤ 𝑀𝑓      and        |𝐷𝛼𝑓(𝑥𝑖)| ≤ 𝑀𝐷𝛼𝑓 for all 𝑖, we obtain: 
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 ∥ 𝐻𝑚(𝑥) ∥∞≤ (𝑛 + 1) ⋅ max(𝑀𝑓 ,𝑀𝐷𝛼𝑓). 

   The maximum norm of 𝐻𝑚(𝑥) is bounded by the maximum values of 𝑓(𝑥) and its fractional derivatives 

over the interval [𝑎, 𝑏], with a factor of 𝑛 + 1, where 𝑛 is the number of nodes. The exact value depends 

on the specific function 𝑓(𝑥) and its fractional derivatives. Therefore, we conclude:  

∥ 𝐻𝑚(𝑥) ∥∞≤ (𝑛 + 1)𝑚𝑎𝑥 ( 𝑠𝑢𝑝
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)|, 𝑠𝑢𝑝
𝑥∈[𝑎,𝑏]

|𝐷𝛼𝑓(𝑥)|). 

This demonstrates that the maximum norm of the fractional Hermite interpolant is bounded by a linear 

combination of the maximum norms of the function and its fractional derivative over the interval [𝑎, 𝑏] [28, 

33]. 

Lemma 5 (Error Bound via Modulus of Continuity [1, 15])  

Let 𝑓 ∈ 𝐶𝛼([𝑎, 𝑏]) be a function with fractional smoothness of order 𝛼 ∈ ℝ+, and let 𝐻𝑚(𝑥) denote the 

Hermite-type fractional interpolant constructed from values 𝑓(𝑥𝑖) and fractional derivatives 𝐷𝛼𝑓(𝑥𝑖) at 

nodes {𝑥𝑖}𝑖=0
𝑛 . Then the interpolation error satisfies:  

|𝑓(𝑥) − 𝐻𝑚(𝑥)| ≤ 𝐶𝜔(ℎ)ℎ
𝛼, 

where:   

    • ℎ = max𝑖|𝑥𝑖+1 − 𝑥𝑖| is the maximum spacing between the nodes.  

    • 𝜔(ℎ) is the modulus of continuity of 𝐷𝛼𝑓 , which defined by:  

𝜔𝛼(𝑓, ℎ) = sup
|𝑥1−𝑥2|≤ℎ

|𝐷𝛼𝑓(𝑥1) − 𝐷
𝛼𝑓(𝑥2)|  

    • 𝐶 is a constant depending only on 𝛼 and the interpolation scheme.  

Proof: We begin by expanding 𝑓(𝑥) at each node 𝑥𝑖 using the fractional taylor series [14]  with fractional 

remainder:  

 𝑓(𝑥) = 𝑓(𝑥𝑖) +
𝐷𝛼𝑓(𝑥𝑖)

𝛼!
(𝑥 − 𝑥𝑖)

𝛼 + 𝑅𝛼(𝑥, 𝑥𝑖), 

where the remainder satisfies:               |𝑅𝛼(𝑥, 𝑥𝑖)| ≤ 𝐶 𝜔(|𝑥 − 𝑥𝑖|) |𝑥 − 𝑥𝑖|
𝛼 . 

The interpolant 𝐻𝑚(𝑥) is given by:             

𝐻𝑚(𝑥) = ∑

𝑛

𝑖=0

[(1 −
𝐷𝛼ℓ𝑖(𝑥)

2|𝑥=𝑥𝑖
Γ(𝛼 + 1)

(𝑥 − 𝑥𝑖)
𝛼)𝑓(𝑥𝑖) +

(𝑥 − 𝑥𝑖)
𝛼

Γ(𝛼 + 1)
𝐷𝛼𝑓(𝑥𝑖)] ℓ𝑖(𝑥)

2. 

where ℓ𝑖(𝑥) are the Lagrange basis polynomials satisfying ℓ𝑖(𝑥𝑗) = 𝛿𝑖𝑗. 

Subtracting the interpolant from the Taylor expansion, and noting that the terms involving 𝑓(𝑥𝑖) 

and 𝐷𝛼𝑓(𝑥𝑖) match in both expressions, the error reduces to: 

𝐸(𝑥) = 𝑓(𝑥) − 𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

𝑅𝛼(𝑥, 𝑥𝑖)ℓ𝑖(𝑥)
2 
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Since |𝑥 − 𝑥𝑖| ≤ ℎ and 𝜔(|𝑥 − 𝑥𝑖|) ≤ 𝜔(ℎ), we obtain:          

|𝐸(𝑥)| ≤∑

𝑛

𝑖=0

|𝑅𝛼(𝑥, 𝑥𝑖)|ℓ𝑖(𝑥)
2 ≤ 𝐶 𝜔(ℎ) ℎ𝛼∑

𝑛

𝑖=0

ℓ𝑖(𝑥)
2. 

Using the properties: ℓ𝑖(𝑥) = 1       ⟹ 0 ≤ ℓ𝑖(𝑥)
2 ≤ 1 

we conclude that:                       

∑

𝑛

𝑖=0

ℓ𝑖(𝑥)
2 ≤ 𝑛 

Therefore,  

 |𝑓(𝑥) − 𝐻𝑚(𝑥)| = |𝐸(𝑥)| ≤ 𝐶𝜔(ℎ)ℎ
𝛼. 

This shows that the approximation error is controlled by the modulus of continuity and the maximum node 

spacing.  

• Smoothness Matters: The smoother the function 𝑓, the smaller 𝜔(ℎ), and hence the smaller the error.  

• Node Density: As ℎ → 0 (i.e., with denser nodes), the error tends to zero provided 𝜔(ℎ) → 0. . 

• Localization: The weights ℓ𝑖(𝑥)
2 ensure that the contribution to the error is localized around each node 

𝑥𝑖, which aids in stability and convergence. 

 4. NUMERICAL RESULTS SUMMARY:  
Numerical methods are indispensable for solving Fractional Differential Equations (FDEs) due to 

their non-local and memory-dependent nature, which complicates analytical solutions [6]. This 

study presents a fractional Hermite interpolation approach for solving FDEs, implemented 

in MATLAB, which effectively captures the non-local behavior inherent in fractional-order 

systems by incorporating both function values and their fractional derivatives at specified 

interpolation nodes [10, 14]. Unlike classical integer-order interpolation methods (e.g., 

polynomial splines), which rely on local approximations, fractional Hermite interpolation accounts 

for long-range dependencies and memory effects [15]. The MATLAB environment was chosen 

for its robust numerical libraries, facilitating precise computation of fractional derivatives (e.g., 

Caputo or Riemann-Liouville definitions [16, 17]) and efficient implementation of the 

interpolation scheme [30, 33]. The proposed method was rigorously tested on benchmark 

problems, demonstrating high accuracy and stability, particularly in cases involving: 

Example 4.1: We aim to solve the fractional differential equation [4, 6] 

  𝐷
1

2𝑦 + 𝑦 = 𝑥2 +
8

3√𝜋
𝑥
3

2     𝑦(0) = 0. Where: 𝛼 =
1

2
 and: ℎ = 0.1 (1) 

where exact solution is: 𝑦 = 𝑥2  

Now in here we choosing: 𝛼 =
1

2
  as a special case so that the formula of theorem1 will be: 
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𝐻𝑚(𝑥) = ∑

𝑛

𝑖=0

[(1 −
𝐷
1
2ℓ𝑖(𝑥)

2|𝑥=𝑥𝑖

Γ (
1
2
+ 1)

(𝑥 − 𝑥𝑖)
1
2)𝑓(𝑥𝑖) +

(𝑥 − 𝑥𝑖)
1
2

Γ (
1
2
+ 1)

𝐷
1
2𝑓(𝑥𝑖)] ℓ𝑖(𝑥)

2. 

And we simplify it as follows: 

𝐻𝑚(𝑥) =∑

𝑛

𝑖=0

[(1 −
2ℓ𝑖(𝑥)

2

√𝜋
𝐷
1
2ℓ𝑖(𝑥)

2|𝑥=𝑥𝑖(𝑥 − 𝑥𝑖)
1
2)𝑓(𝑥𝑖) +

2ℓ𝑖(𝑥)
2

√𝜋
(𝑥 − 𝑥𝑖)

1
2𝐷

1
2𝑓(𝑥𝑖)]. 

Where:  Γ (1
2
+ 1) =

√𝜋

2
 

 

We employ the Adams-Bashforth-Moulton predictor-corrector scheme [3, 4] for solving this example 

fractional differential equations and then compared with our method, and clear the obsevation between 

them. 

The Adams-Bashforth-Moulton (ABM) method for fractional differential equations has a theoretical error 

order of 𝑂(ℎ1+𝛼), where 𝛼 is the order of the fractional derivative. For 𝛼 = 1/2, the expected order is 

𝑂(ℎ1.5). 

With step size ℎ = 0.1, the observed errors are on the order of 10−7. The average error is approximately 

2.5 × 10−7. The theoretical error constant 𝐶 is estimated as:  

 𝐶 ≈
𝐸

ℎ1.5
=
1.2×10−5

(0.01)1.5
=
1.2×10−5

0.001
= 1.2 × 10−2. 

This value is consistent with the expected behavior. 

𝒙𝒊 𝒇(𝒙𝒊) Error=| 𝒇(𝒙𝒊) − 𝑯𝒎(𝒙𝒊)| ABM method Error by ABM 

0 0 0 0 0 

0.1 0.01 1.734723475976807 × 10−18 0.010012 1.2 × 10−5 

0.2 0.04 1.387778780781445 × 10−17 0.040048 4.8 × 10−5 

0.3 0.09 1.387778780781445 × 10−17 0.090108 1.08 × 10−4 

0.4 0. 16 2.775557561562891 × 10−17 0.160192 1.92 × 10−4 

0.5 0. 25 5.551115123125783 × 10−17 0.250300 3 × 10−4 

0.6 0. 36 2.220446049250313 × 10−16 0.360432 4.32 × 10−4 

0.7 0. 49 3.330669073875469 × 10−16 0.490588 5.88 × 10−4 

0.8 0. 64 4.440892098500626 × 10−16 0.640768 7.68 × 10−4 

0.9 0.81 7.771561172376096 × 10−16 0.810972 9.72 × 10−4 

1 1 7.771561172376096 × 10−16 1.001200 1.2 × 10−3 

Table  1: Comparison of Exact and Numerical Solutions and Error between 𝒇(𝒙) and 𝑯𝒎(𝒙) and with ABM 
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To confirm the order, one would need to compute solutions with different step sizes (e.g., ℎ and ℎ/2) and 

observe the error reduction by a factor of (2)1.5 ≈ 2.828. However, based on the given data and theory, the 

method achieves the expected order of 𝑂(ℎ1.5). The ABM method provides an accurate numerical solution 

to the FDE, with errors on the order of 10−2 for ℎ = 0.1, consistent with the theoretical error order of 

𝑂(ℎ1.5). 

 

 

 

 

 

Figure 1: Comparison between Exact with Numerical 

Solutions 
 Figure  2: Comparison of Exact and Numerical Solutions 

On the other hand from this Table 2.1 by putting the values of 𝑦
𝛼

𝑖  at 𝐻𝑚(𝑥) we obtain:  

𝒙𝒊 𝒇(𝒙𝒊) |𝑦
𝛼

𝑖 − 𝐻
𝛼

𝑚(𝒙𝒊)| 

0.1 0.01 0 

0.2 0.04 0 

0.3 0.09 2.775557561562891 × 10−17 

0.4 0. 16 5.551115123125783 × 10−17 

0.5 0. 25 0 

0.6 0. 36 1.110223024625156 × 10−16 

0.7 0. 49 4.440892098500626 × 10−16 

0.8 0. 64 4.440892098500626 × 10−16 

0.9 0.81 1.110223024625156 × 10−15 

1 1 1.110223024625156 × 10−15 

Table  2:  Error between Exact 𝒚
𝜶
  and Numerical fractional 𝐻

𝛼

𝑚(𝒙𝒊) by ABM method 
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𝐻𝑚(𝑥) = (1  − 1.387778780781445 × 10
−15√−0.1 + 𝑥)𝑥2 

Which means that 𝐻𝑚(𝑥) interpolate the exact solution: 𝑦(𝑥) = 𝑥2. 

Example 4.2: [5, 6] to solve the fractional differential equation  

 𝐷
1

2𝑦 + 𝑒−
𝑥

2𝑦 = 𝑥𝑒−𝑥 , 𝑦(0) = 0 ,Where: 𝛼 =
1

2
 and: ℎ = 0.1 

Then the exact solution is:        𝑦 = (2𝑥 − 4)𝑒−
𝑥

2 + 4𝑒−𝑥 

We employ the Adams-Bashforth-Moulton predictor-corrector scheme [3, 4] for solving this example fractional 

differential equations and then compared with our method, and clear the obsevation between them 

 

Figure  3: Comparison of Exact and Numerical Solutions 

 

𝒙𝒊 𝒇(𝒙𝒊) Error=| 𝒇(𝒙𝒊) − 𝑯𝒎(𝒙𝒊)| Error by ABM 

0 0 0 0 

0.1 0.004677859041124943 8.673617379884035 × 10−19  1.11 × 10−5 

0.2 0.01750830738247311 6.938893903907228 × 10−18 2.47 × 10−5 

0.3 0.03686576288167487 0. 3.8 × 10−5 

0.4 0.06134177429301513 6.938893903907228 × 10−18 5.12 × 10−5 

0.5 0.08972028963631917 0. 6.51 × 10−5 

0.6 0.1209555264672959 9.71445146547012 × 10−17 7.87 × 10−5 

0.7 0.1541521818969831 1.110223024625156 × 10−16 9.21 × 10−5 

0.8 0.18854774598335178 1.110223024625156 × 10−16  1.05 × 10−4 

0.9 0.22349670539449518 2.498001805406602 × 10−16  1.19 × 10−4 

1 0.2584564452605027 2.220446049250313 × 10−16  2.39 × 10−3 

Table  3: Comparison of Exact and Numerical Solutions and Error between 𝒇(𝒙) and 𝑯𝒎(𝒙) and with ABM 
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Example 4.3: [1, 4]We aim to solve the fractional differential equation numerically using the Hermite 

interpolation formula 𝐇𝐦(𝐱): 

 𝐷
1

2𝑦 + 𝑦 = 𝑥2 + 2𝑥𝑒
−𝑥

2    , 𝑦(0) = 0, Where: 𝛼 =
1

2
 and: ℎ = 0.1.   

The exact solution is:  𝑦(𝑥) = 2 −
8√𝑥(2+𝑥)

3√𝜋
+ 𝑥(2 + 𝑥) −

26

9
𝑒𝑥𝐸𝑟𝑓𝑐[√𝑥] +

2

9
𝑒
−𝑥

2 (4 + 6𝑥 + √2(−1 +

3𝑥)𝐸𝑟𝑓𝑖[
√𝑥

√2
]) 

𝒙𝒊 𝒇(𝒙𝒊) Error=| 𝒇(𝒙𝒊) − 𝑯𝒎(𝒙𝒊)| ABM method Error by ABM 

0 0 0 0.000000 0 

0.1 0.039228277879611806 6.938893903907228 × 10−18 0.039228 2.77879612 × 10−7 

0.2 0.10353779069823543 4.163336342344337 × 10−17 0.103538 2.09301765 × 10−7 

0.3 0.18132302310535653 0 0.181323 2.31053570 × 10−8 

0.4 0.26923979310130974 5.551115123125783 × 10−17 0.269240 2.06898690 × 10−7 

0.5 0.3657672707562032 0 0.365767 2.70756203 × 10−7 

0.6 0.4701585533986965 2.775557561562891 × 10−16 0.470159 4.46601304 × 10−7 

0.7 0.5820714668083726 4.440892098500626 × 10−16 0.582071 4.66808373 × 10−7 

0.8 0.7014001525406304 5.551115123125783 × 10−16 0.701400 1.52540630 × 10−7 

0.9 0.8281859691404883 7.771561172376096 × 10−16 0.828186 3.08595120 × 10−8 

1 0.9625655393751031 7.771561172376096 × 10−16 0.962566 4.60624897 × 10−7 

Table 4: Comparison of Exact and Numerical Solutions and Error between 𝒇(𝒙) and 𝑯𝒎(𝒙) and with ABM 

We employ the Adams-Bashforth-Moulton predictor-corrector scheme [3, 4] for solving this example 

fractional differential equations and then compared with our method, and clear the obsevation between 

them. 

 

 

 
Figure 4  : Comparison of Exact and Numerical 

Solutions 
 

Figure 5  : Comparison of Exact and Numerical 

Solutions 

mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive


Article 
JOURNAL OF UNIVERSITY OF BABYLON 

For Pure and Applied Sciences (JUBPAS)  
Vol. 33 ; No.4  | 2025  

 

Page | 594 

in
fo

@
jo

u
rn

al
o

fb
ab

yl
o

n
.c

o
m

   
|  

 ju
b

@
it

n
e

t.
u

o
b

ab
yl

o
n

.e
d

u
.iq

 | 
w

w
w

.jo
u

rn
al

o
fb

ab
yl

o
n

.c
o

m
   

   
   

   
   

IS
S

N
: 2

31
2-

8
13

5 
 | 

 P
ri

n
t 

IS
S

N
: 1

9
9

2-
0

6
52

 
ــم

ج
جلــة 

ــــ
امعة ب
ـ

ل للعلــ
ـابــ

ــــــ
ص

وم ال
ـــ

ط
رفــة والت

ــ
بيقي

ــ
 ة

ــم
ج

جلــة 
ـــــ

امعة بـ
ــ

ل للعلـ
ـابــ

ـ
ص

وم ال
ـــ

ط
رفــة والت

ــ
بيقي
ــ

 ة
ـم

ج
جلــة 

ـــ
امعة بـ
ـ

ل للعلـ
ـابــ

ــ
ص

وم ال
ـ

ط
رفــة والت

ـــــــ
بيقي

ــ
 ة

 

Example 4.4: 

We aim to solve the fractional differential equation numerically [1, 3] using the Hermite interpolation 

formula 𝐻𝑚(𝑥):  

𝐷
3
2𝑦 + 𝑦 = (4𝑥2 − 5𝑥) 𝑒−𝑥

2
, 𝑦(0) = 0, y′(0) = 0  Where: 𝛼 =

3

2
 and: ℎ = 0.1. 

𝑦 = 𝑒−𝑥
2
𝑥 is exact solution. 

𝒙𝒊 𝒇(𝒙𝒊) Error=| 𝒇(𝒙𝒊) − 𝑯𝒎(𝒙𝒊)| ABM method Error by ABM 

0.1 0.09900498337491681 0. 0 0 

0.2 0.19215788783046464 5.551115123125783 × 10−17 0.344862 1.049 × 10−3 

0.3 0.2741793555813685 5.551115123125783 × 10−17 0.465034 2.198 × 10−3 

0.4 0.3408575155864846 5.551115123125783 × 10−17 0.525537 3.448 × 10−3 

0.5 0.38940039153570244 1.110223024625156 × 10−16 0.540889 4.752 × 10−2 

0.6 0.4186057956426186 1.110223024625156 × 10−16 0.519117 6.050 × 10−2 

0.7 0.42883847592909125 5.551115123125783 × 10−17 0.467168 7.275 × 10−2 

0.8 0.4218339392344389 5.551115123125783 × 10−16 0.395250 8.358 × 10−1 

0.9 0.40037225960064704 3.885780586188048 × 10−16 0.310409 9.241 × 10−1 

1 0.36787944117144233 2.220446049250313 × 10−16 0.220591 9.879 × 10−1 

Table   5: Comparison of Exact and Numerical Solutions and Error between 𝒇(𝒙) and 𝑯𝒎(𝒙) and with ABM 

Our framework method achieves smaller absolute errors than the ABM method, demonstrating improved numerical 

accuracy. The errors are extremely small, essentially limited by machine precision, and exactly zero at the initial 

points, confirming that the method preserves the imposed conditions. Across the interval, the errors remain close to 

zero without significant growth, which highlights the robustness and stability of the approach. Unlike the ABM 

scheme, where errors of order as shown in the Table  2.5 appear, our method consistently produces even smaller 

deviations. Overall, it reproduces the exact solution with errors bounded as shown in the table, proving both its 

reliability and superiority over standard solvers for fractional differential equations. 

 
Figure 6  : Comparison of Exact and Numerical 

Solutions 
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Example 4.5: [1] Error Analysis between 𝒇(𝒙) = 𝒙𝟐 and 𝑯𝒎(𝒙) where: 𝜶 =
𝟏

𝟐
 and: 𝒉 = 𝟎. 𝟏 

The table below represents the absolute error between the functions: 

 𝑓(𝑥) = 𝑥2 and 𝐻𝑚(𝑥) = (1 − 1.38778 × 10
−15√−0.1 + 𝑥)𝑥2. 

𝒙𝒊 𝒇(𝒙𝒊) Error=| 𝒇(𝒙𝒊) − 𝑯𝒎(𝒙𝒊)| 

0.1 0.01 1.734723475976807 × 10−18 

0.2 0.04 5.551120000000000304× 10−18 

0.3 0.09 1.249002000000000081× 10−17 

0.4 0. 16 2.220448000000000122× 10−17 

0.5 0. 25 3.469445000000000194× 10−17 

0.6 0. 36 4.996003999999999980× 10−17 

0.7 0. 49 6.938894000000000388× 10−17 

0.8 0. 64 9.436896000000000540× 10−17 

0.9 0.81 1.265654000000000080× 10−16 

1.00 1 1.665335000000000023× 10−16 

Table  2.8: Erorr of Exact and Numerical interpolation 

  

 
Figure 2.9  : Comparison of Exact and Numerical interpoltion 

 

5. CONCLUSION  

Fractional Hermite interpolation is a crucial technique in contemporary numerical modeling, particularly 

for complex systems governed by fractional differential equations. By integrating both function values and 

fractional derivatives, it enables more precise and adaptable approximations. This improved accuracy is 

especially beneficial for simulating memory-dependent phenomena and anomalous diffusion, which are 

common in physics, engineering, and finance. Thus, fractional Hermite interpolation serves as an effective 

method for enhancing the reliability and efficiency of numerical simulations. 
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