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ABSTRACT

Fractional differential equations (FDES) play a fundamental role in modeling complex physical, biological,
and engineering phenomena characterized by memory effects and nonlocal dynamics. This paper presents
an efficient numerical framework based on a fractional Hermite interpolation formula for solving FDEs.
The proposed method extends the classical Hermite interpolation scheme to fractional calculus by
embedding fractional derivatives within the interpolation structure, thereby improving approximation
precision and convergence behavior. To enhance computational performance, optimized interpolation
nodes and refined fractional derivative approximations are introduced, effectively reducing truncation
errors and improving numerical stability. The method is systematically formulated and implemented in a
computational environment, with numerical experiments verifying its robustness and accuracy. Results
confirm that the proposed scheme achieves superior stability and precision compared with conventional
numerical techniques, demonstrating its potential for broad application in the solution of fractional-order
models across scientific and engineering domains.

Keywords: Fractional differential equations; Hermite interpolation; numerical methods; interpolation
formula; computational efficiency; fractional derivatives; numerical approximation.

1 INTRODUCTION

Fractional calculus generalizes classical calculus by extending the concepts of differentiation and
integration to non-integer (fractional) orders [1-4]. Unlike traditional integer-order derivatives, fractional
derivatives intrinsically include memory and hereditary effects, enabling them to describe systems whose
current states depend on the entire history of their evolution. These properties make fractional calculus a
powerful mathematical framework for modeling complex processes in physics, engineering, biology, and
finance. Several definitions of fractional differentiation exist, most notably the Riemann—Liouville, Caputo,
and Grinwald-Letnikov formulations [5-8]. Each definition provides unique analytical and computational
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advantages depending on the boundary conditions and smoothness of the problem. The flexibility and
physical relevance of these formulations have positioned fractional differential equations (FDEs) at the core
of modern mathematical modeling [9-12].

FDEs have been successfully employed to describe memory-dependent dynamics in viscoelastic materials,
anomalous diffusion, control systems, and complex biological networks [13-18]. Although differential
equations (DEs) include memory and hereditary properties, they provide a more accurate representation of
many systems with motion [19]. Because fractional derivatives are nonlocal, they are more difficult to
solve numerically, despite their advantages. Recent research has focused on developing hybrid numerical
approaches that combine the stability and smoothness of spline-based approximations with the flexibility
of algebra [20, 21].

However, their nonlocal nature often introduces computational challenges when deriving accurate
numerical solutions of the fractional calculus [22, 23]. Classical numerical schemes-originally developed
for integer-order equations—are often limited by high computational cost and reduced stability when
extended to fractional systems [24-27]. To overcome these challenges, interpolation-based numerical
strategies have gained attention, particularly Hermite interpolation, which utilizes both function values and
derivative information [34, 35]. These methods incorporate fractional derivatives into the interpolation
framework, significantly enhancing approximation accuracy for FDEs. Previous works have shown that
fractional Hermite schemes outperform classical polynomial or spline approaches in accuracy and
convergence [36, 38]. The extension of this concept to fractional calculus—termed fractional Hermite
interpolation—was initiated by Luchko [3] and further developed in recent studies [39]. The method
introduces an optimized selection of interpolation nodes and utilizes refined fractional derivative
approximations to minimize truncation errors [40]. Nonetheless, several open issues remain, including
numerical instability, computational complexity, and limited adaptability to mixed or nonstandard
boundary conditions [41-43]. In this work, we propose an improved fractional Hermite interpolation
framework designed to enhance both computational efficiency and numerical stability. The proposed
formulation also extends applicability to a wider class of FDEs, ensuring robust accuracy under diverse
initial and boundary conditions. Validation through comprehensive numerical experiments demonstrates
superior performance over existing interpolation-based fractional numerical methods.

2 BASIC DEFINITIONS

This section introduces the mathematical background necessary for constructing the proposed method,
including interpolation theory, fractional derivatives, and relevant norms.

2.1 Interpolation and Fractional Differential Equations

Interpolation provides a mechanism to estimate unknown function values from a known discrete dataset. In
the context of FDEs, interpolation techniques are extended to incorporate fractional derivatives, giving rise
to fractional Hermite interpolation [44, 45]. Fractional differential equations involve derivatives of non-
integer order and are used to describe systems exhibiting memory and hereditary effects. Their numerical
solution requires specialized algorithms capable of handling fractional operators with nonlocal dependence.

2.1.1 Hermite Interpolation for Integer Order

Hermite interpolation approximates a smooth function by using both its values and derivative values at
given nodes. Given distinct points xg, x4, ..., X, With f(x;) and f'(x;) known, the Hermite interpolation
polynomial H,,(x) satisfies:
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H,(x)) =f(x;), i=01,..,n, (1)
H,(x)=f(x), i=01,..,n (2)

By incorporating derivative information, this scheme achieves higher accuracy than standard polynomial
interpolation [2, 9].

2.2 Fractional Derivatives
Fractional derivatives extend differentiation to arbitrary real (or even complex) orders. The most widely
used formulations are those of Riemann—Liouville and Caputo[19-23].

2.2.1 Riemann-Liouville Derivative
The Riemann-Liouville fractional derivative of order « is defined as [1]:

Df(x) = - (nl_a)% [F - eif()dt, n—1<a<n. 3)

2.2.2 Caputo Derivative
The Caputo fractional derivative of order « is given by:

DUf() = e Ja = T () d. (4)

2.3 Fractional Taylor Series

The fractional Taylor series [4] generalizes the classical expansion to fractional-order derivatives:

Fx) = Ty LDED (o yna (5)

F(na+1)

This formulation allows fractional-order function reconstruction based on non-integer derivative data

2.4 Maximum Norm
The maximum norm (or supremum norm) measures the greatest absolute deviation of a function over a
given domain [5]:

Il f llo= sup|f(x)]. 6
XEQN

3 FORMULATION OF THE METHOD

The proposed method constructs a fractional Hermite interpolation polynomial to approximate solutions of
FDEs. This section details the derivation of the numerical scheme.

3.1 Approximation of Fractional Derivatives

To compute fractional derivatives at selected interpolation nodes, we adopt a hybrid finite-difference and
fractional Taylor expansion strategy following Tenreiro Machado [14] and later computational refinements
[24-27]. For a smooth function f on [a, b], its fractional derivative at node x; is approximated by:

DEF(x) = 7 Bheco (—1* () F (i), ()
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ay I'(a+1) . . . . - . . .
where (k) = Tror@rip the generalized binomial coefficient. This discrete formulation ensures

computational efficiency and can be implemented directly in MATLAB.

3.2 Construction of the Fractional Hermite Interpolant
With f(x;) and their corresponding fractional derivatives known, the fractional Hermite interpolation
polynomial is defined as [41- 43]:

Hp(x) = Xito [f (x) Li(x) + DEf (x;) My(x)], (8)

with the conditions:
Li(xj) = 6ij, DgLi(x)) =0, M;(x;) =0, DyM;(x;) = ;. )
These properties ensure that H, (x) simultaneously interpolates both the function and its fractional

derivative at each node, thus generalizing the classical Hermite conditions to the fractional domain.

3.3 Theorem 1: Let a € R*, n € N, and f(x) be a function such that D*f(x) is continuous on
[a, b]. Given mesh points a = x¢ < x; < :* < x, = b, the Fractional Hermite interpolation

H,,(x) satisfying:
H,(x;) = f(x;) foralli =0,1,..,n,and D*H,(x;) = D*f(x;) foralli=10,1,...,n

can be expressed as:

_ D) e, =2,
Hyn(3) = 21( T D) (—M))N@f@0+m Ty LD G|

where £;(x) denotes the Lagrange basis polynomial corresponding to the node x;.

Proof. The unknown coefficients a,, a;, by, and b, of:

n

Hp (x) = Z [(ao + a1 (x = x) )i ()2 f (1) + (bo + by (x — x) )€ (x)*D¥f (x;)],

i=0

are determined by enforcing the interpolation conditions on H,,(x) and its fractional derivative
D*H,,(x) at the nodes x;,

Assume the form of the interpolant as:

n

Hn(0) = ) [0 + B ()],

i=0
where the individual terms are:

hi(x) = (ao + a1 (x = x)D(O)* f(x) & hi (x) = (bo + by (x —
X)) (x)?Df (x;).
At x = x;, the terms become: h;(x;) = ao?;(x)?f(x;) = aof (x;) and
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hi (x;) = bo?;(x)*D*f (x;) = boD*f (xy).
For the condition H,,(x;) = f(x;), we require: aof (x;) + boD*f (x;) = f(xy).
Compute the a-th derivative of H,, (x) at x;. First, consider the derivatives of the individual terms:

The values of coefficients ay, a;, by, b; into the expression for H,,, (x):

Da{i(x)2|x=xi and |p, = 1
rla+1) | YT r(a+1)

|b0:0|, a1:_

yields the stated results via algebraic manipulation and properties of the Gamma function and:

D¢, (x) |x= YtiE) le=x; a (x = x)" a
m(x)—z (1= T e e o) + S a0 )

Lemma 1 Let H,,(x) be the Fractional Hermite interpolating polynomial defined by Theorem 1
where £;(x) are the Lagrange basis polynomials, then the Riemann-Liouville fractional derivative
DP of order B > 0 is given by:

D (¢; - Ma+1
()] DRy Moy o JZ (a+1)

@+ 1) ek & D@

DAl () = ) [f(xiwﬁfi(x)z
i=0
DUf(x;) (/;) [(a+1)

- -~ @z _ s~ N\a—kpnB-kyp, 2
Fla+ D& \k Fla—k+ 1 TP

Proof: To compute the fractional derivative DP of order f € R* for the given Fractional Hermite
interpolation formula, we proceed as follows. For clarity, we assume the Riemann-Liouville
fractional derivative definition, which generalizes integer-order differentiation to non-integer
orders. The formula is:

Hp(x) =

DE(£i (1)) l=x; « 2 (x —x)* «
(1_W(x_xi) )i’i(x) f(xi)+r( +1)f’( )?D f(x)‘

Functionvalueterm Derivativeterm

n
i=0

« £;(x) is a polynomial, so #;(x)? is also a polynomial.

* (x —x;)® is a power function. For fractional derivatives, we use the Riemann-Liouville
formula:

ry+1
re¢g—p+1

Now to compute DPH,, (x) term by term:

DB(x — x))Y = (x—x)7F, y>1.

Term 1: DR[£, (x)?f (x)],
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- Since f(x;) is a constant, DB[£;(x)?f (x;)] = f(x;)DP#;(x)? (8)
- If £;(x) is a degree-m polynomial, then Df#;(x)? = 0 for > 2m.

D% fi z X=X; -
Term 2: DB [% (x — xi)“fi(x)zf(xi)], where D“(fi(x)2)|x=xl. IS a constant.

- we apply the generalized Leibniz rule[1] for fractional derivatives :

oo

DAl —x)i@?] = ) (F) ¥ —xp® - DF ke )2 ©
k=0

Using the Riemann-Liouville derivative of power functions:

r'(a+1)

D*(x — x)% = raken &~ x)* 7k
Therefore: we obtain that: D H,,,(x) = Y™, [f(x)A;(x) + D*f (x;)B;(x)] (10)
DD xmr; ree r(a+1) kg
A,() = D, (x)? = Ty (B) HED (o yekpP-ke, ()2 (11)

oy =1 vy (B)_rlt+n v Na—knB=kp (2
Bi() = 1y o (i) sy (& — 10D 0u0)

When 8 = a and x = x;, the fractional derivative of the Hermite interpolant simplifies to:

D*H,,(x;) = D*f(x;) , By using the cardinal property #;(x;) = &;;.

Lemma 2: (Existence and Uniqueness of Hermite Interpolation with Fractional Derivatives)

Let {x;}i-, be distinct uniformly spaced nodes in the interval [a, b], and let f be a function such
that its fractional derivative D% f of order a € R* exists at each x; and continuous on [a, b] Then
there exists a unique “exists uniquely[28, 37]” interpolating function H,,(x) of the form:

N DE(#;()?) | e, . ) =2, .
Hp(x) = ; [(1 _W(x_xi) )fi(x) flx)+ XCEE) £ (x)°Df (xp) |,

Where #;(x) is the Lagrange basis polynomial corresponding to node x;, f(x;) is the value of the
function at x;, D%f (x;) denotes the fractional derivative of order « at x;.

Proof: Fisrt we define the functions as follows:

Bi(x) = (1= 2890 (x - x)®) £, 007, (12)
i) = S04, ()2 (13)
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These satisfy the interpolation conditions:
¢i(x;) = 85, ¥i(x) = 0, (14)
D%¢;(x;) = 0,D%Y;(x;) = &y;. (15)

To show that ¢;(x) and y;(x) form a complete basis for the space of Hermite interpolants, we
follow these steps.

From the above conditions, the linear independence [29] of these functions: {¢; (x), ¥; (x)}

Now we must to show that these functions are independent so we define the evaluation matrix A
with rows indexed by interpolation points x; and columns indexed by basis functions:

[$o(%0) b1 (x0) o On(x0) Yo(xp) Yy (%) e Up(xo)
fbo(x1) ‘¢1 (x4) o ‘d)n(X1) }|10(X1) }|J1 (x1) _--- }Un(X1)
Dol BB e Bal) el U)o Un(x)

D%o(x9) DY 1(X¢) ... DYn(x9) D*Py(x9) D y(xX¢) ... D Yp(xp)|
Do(x)) Dpy(x) o Dpy(x) DYolx) DiCxa) - Dplxy)

Do) Dy(xy) o DUk DfWolx) D) o Dy ()]
From the conditions in equations (14) and (5) and the matrix A takes the block diagonal form:

a=lo 1)

where I is the identity matrix.

Since A is block diagonal, its determinant is the product of the determinants of the identity blocks:
det(A) = det(I)-det(D =1x1=1=+0.

Since the determinant is nonzero, the basis functions ¢;(x) and y;(x), is linearly independent.

The functions: ¢;(x) and ys;(x) Span [29] the Hermite Interpolation Space.

The Hermite interpolation problem requires constructing a function H(x) that satisfies both
function values and derivative conditions at given points:

H(x;) = f;, D*H(x;) = g;- (16)

We use the previously defined basis functions:

pix) = (1 - 288 (o — )@Y £, ()7, (1)
i) = S, ()2, (18)

These functions satisfy the interpolation conditions:
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¢i(xj) = 6ij)'~/)i(xj) =0, (29)
D%p;(x;) = 0,D*Y;(x;) = &y (20)

Then, the general Hermite interpolating function is written as:
n n
HE@ = ) fith@) + ) gahi (o).
i=0 i=0

By construction:
H(x;) = f;, (21)
D“H(xj) =g;. (22)
This ensures that H(x) satisfies the conditions of Hermite interpolation.

Substitute x = x; into H(x). By construction:

< Daf'(xi)zlx:x- « (xi - x-)“ «
Hp (%) = ; [(1 - W(xi - xj) )f)j(xi)zf(xj) + 1“(a—-|-]1)€j(xi)2D f(xj)

= f(xl-)(since: ti(x;) = Sij). (23)
Similarly, applying D* to H,,,(x) and evaluating at x; yields D*H,,(x;) = D*f(x;).
From Lemma 3.1, we conclude that:  H,,(x;) = f(x;) & D%*H,,(x;) = D*f(x;)
According to uniqueness in [28], we suppose two interpolants H,(,f) (x) and H,(,f)(x) satisfy the
conditions. Define E(x) = H,(,})(x) — H,(,f)(x). Then:

E(x;) = 0,Vi = D*E(x;) = OVi.

Since E(x) is a linear combination of basis functions vanishing at all nodes with zero fractional
derivatives, E(x) = 0. Thus, H" (x) = H? (x).

Since ¢;(x) and ¥;(x) are linearly independent and their span contains all possible Hermite
interpolants, they form a basis [29] for the Hermite interpolation space. Thus, they span the space
of Hermite interpolating polynomials.

Where H,, (x) is the unique function satisfying H,,,(x;) = f(x;) and D*H,,(x;) = D*f (x;) for all
i=0,1,..,n.

The interpolation problem imposes 2(n + 1) conditions (function and derivative values at n + 1
nodes). The formula H,,,(x) is constructed using 2(n + 1) basis functions:

DY(2;()?)|x=x; _ (x—xp®

Bi(x) = (1= T = 1)) 4%, i) = S0, (07,
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These form a basis for the space of functions interpolating f (x;) and D*f (x;).

At x = x;, ¢;(x;) = &;; and ;(x;) = 0. - For the derivatives, D*¢;(x;) = 0 and DY;(x;) =
d;;. - The Kronecker delta properties ensure linear independence: no non-trivial combination of ¢;
and ys; can vanish at all nodes or their derivatives.

The coefficients of H,,,(x) solve the linear system:

{Hm(xi) = f(xy),
DHp, (x;) = D¥f (x;).

The basis functions ¢;, {; generate a Vandermonde-like matrix with a zero determinant due to
linear independence, ensuring a unique solution.
Lemma 3: (Error Analysis and Consistency)

Let H,,(x) be the fractional Hermite interpolant of a sufficiently smooth function f(x) over an interval
[a, b] using nodes {x;}{~,. Then the interpolation error:

e(x) = f(x) — H,,(x) satisfies the following properties:
Peano Kernel Representation [31, 32]: There exists a kernel function K (x, t) such that

b
e(x) = f K (x, )D DA+ (1) d,

a

where L, [f] = e(x) is the interpolation error functional.

Error Bound [28, 31]: The kernel K (x, t) satisfies the inequality

(n+1)(1+a)-1
(x =)

K (x, Dl < r(n+ DA +a)

leading to the uniform error estimate
I D(n+1)(1+a)f "oo (b _ a)(n+1)(1+a)

e llo< I'((n+ D1+ a))

Consistency with Classical Interpolation [33]:

- As a — 0, the Caputo derivative D%f(x;) reduces to f(x;), and the interpolation formula reduces to
standard Lagrange interpolation.

- For a = 1, the fractional Hermite interpolant coincides [15, 32] with the classical Hermite interpolation,
confirming consistency.

Proof. We prove each part of the lemma:

Peano Kernel Representation [13, 31]. The error functional is defined as:

Lylf1=f(x) = Hp(x) = e(x).
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By the generalized Peano kernel theorem[31] (adapted to fractional order derivatives), this error can be
represented as:

b
e(x) = f K (x, ) D@+ DA+ £ (1) d,

where K (x, t) is the Peano kernel associated with the interpolation operator.

Kernel Bound [28, 32]. Using the properties of the Peano kernel, we have the bound:

n+1)(1+a)-1
( —t +n a

kG Dl < M+ DA+ )

Hence, the interpolation error satisfies:

b b
le@)l < [ 1KG 01 [PV ] de < DI 1, [ K G, )lde
a

a
Computing the integral of the kernel bound yields:
I D(n+1)(1+a)f leo (b _ a)(n+1)(1+a)
I((n+ DA +a)+1)

lello<

Hence we conluded the error bound:

((n+1)(1+a)
B0 = /@ = n] = e S [ e-xoe, gelan)
"i=0

On the other hand Let: h = max|x —x;| = h'*® = max|x — x;|**% = [T, (x — x)'** <
n_o h1+a — h(1+a)(n+1)

Therefore the order of error is; = 0(h) = h(A*+®)(+1)

Consistency [5]:

Caese 1: When a — 0, the fractional derivative D*f (x;) becomes f (x;), and the Hermite formula
H,,(x) reduces to the classical Lagrange interpolating polynomial [5,31] so that:

(n+1)
= E()() = (H(f,)]_[( ~x), felab]

And the order of error will be: 0(h) = h*+D).

Case 2: When a = 1, the fractional derivative becomes the classical derivative, and the interpolation
structure matches that of classical Hermite interpolation [3, 9], where both function values and first
derivatives are interpolated. In other words the formula of theorem1 will reduce to:

(0 = ) [(1 = 261 G = x0)f G + (= 3 () €102
i=0
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The error bound formula reduce to:

2n+2)
= B0 = 1) = ()l = L0 ]_[ (c—x)(x =x)%  §€lab]
i=0

With it’s order of error: = 0(h) = h(2n+2),
Lemma 4 (Maximum Norm ofH,,, (x)):

Let H,,(x) be the fractional Hermite interpolant of a function f(x) on the interval [a, b] using (n + 1)
interpolation nodes {x;}/-,. Then the maximum norm of H,, (x) is bounded by:

|l Hyp () o< (n + 1)max( sup |f()], sup ID“f(x)I>-
x€[a,b] x€[a,b]
where D% f denotes the Caputo fractional derivative of order a.

Proof: Recall the maximum norm (or supremum norm) of a function f over [a, b] is defined as:

I fllo= sup |f(x)]
x€[a,b]

We now estimate the maximum norm of H,,, (x) by analyzing the terms in its construction.

Function Value Term: One part of the interpolant takes the form:

1— Da(fi(x)2)|x=xi
F'la+1)

(x = xJ“) (O f (x),

where ¢;(x) is the local Lagrange basis polynomial. Since #;(x) is a polynomial of fixed degree, its square
and fractional derivative are bounded on [a, b]. The factor (x — x;)* is also bounded as x € [a, b]. Thus,

this entire term is bounded by a constant multiple of If(xl-) |.
Derivative Term: Another part of the interpolant is: ‘) {’ {(0)2DYf (x;).

As before, £;(x)? € [0,1] and (x — x;)% is bounded on [a, b], so this term is also bounded by a constant
multiple of |[D¥f (x;)|.

Bounding the Interpolant: Each term in the interpolant H,,(x) is bounded by a combination of |f (x;)|
and |D%f(x;)|. Taking the supremum of H,,,(x) over [a, b] yields:

I Hn () = )" (f Gl + D% GDI)
i=0

Let us define:

My = sup [f(x)|,Mpay = sup. ID“f(x)I

x€la,b] x€la,b

Then, since |f(x;)| < My  and |ID¥f (x;)| < Mpay forall i, we obtain:
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I Hyp () o< (n + 1) - max(My, Mpay).

The maximum norm of H,,, (x) is bounded by the maximum values of f(x) and its fractional derivatives
over the interval [a, b], with a factor of n + 1, where n is the number of nodes. The exact value depends
on the specific function f(x) and its fractional derivatives. Therefore, we conclude:

I Hip () lloo< (n + 1)mtIX< sup |f(x)l, sup |D“f(X)|)-

x€[a,b] x€[a,b]

This demonstrates that the maximum norm of the fractional Hermite interpolant is bounded by a linear
combination of the maximum norms of the function and its fractional derivative over the interval [a, b] [28,
33].

Lemma 5 (Error Bound via Modulus of Continuity [1, 15])

Let f € C*([a, b]) be a function with fractional smoothness of order « € R*, and let H,,,(x) denote the
Hermite-type fractional interpolant constructed from values f(x;) and fractional derivatives D*f(x;) at
nodes {x;}i-,. Then the interpolation error satisfies:

|f () = Hu(x)| < Cw(h)R",
where:
* h = max;|x;;; — x;| is the maximum spacing between the nodes.

* w(h) is the modulus of continuity of D%f , which defined by:

we(f,h) = sup hID“f(xl) —Df(x2)l

[x1—2x21<
« C is a constant depending only on a and the interpolation scheme.

Proof: We begin by expanding f(x) at each node x; using the fractional taylor series [14] with fractional
remainder:

DYf(xy)
F) = FO) + =275 (6 = %)% + Ra (%, %),
where the remainder satisfies: |Re(x, x)| < C w(]x — x;]) |x — x;]%.

The interpolant H,, (x) is given by:

N DUL; (%)% | o,
Hin () = Z (1 BRCES)

i=0

(x —x)*
Ia+1)

(x = xi)“) flx) + DEf (x| £:(x)*.

where ¢;(x) are the Lagrange basis polynomials satisfying t’i(x]-) = ;.

Subtracting the interpolant from the Taylor expansion, and noting that the terms involving f(x;)
and D* f(x;) match in both expressions, the error reduces to:

EGO) = f() = Hn(®) = ) Re(x, 1,6’
i=0
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Since |x — x;| < hand w(|]x — x;]) < w(h), we obtain:

EGOI S D IRa( 2[00 < C (k) B ) ()%

Using the properties: fi(x)=1 =0<4(x)?*<1

we conclude that:

n
Z 2;(x)><n
i=0

Therefore,
|f(x) — Hp(x)| = |[E(x)| < Cw(h)h“.

This shows that the approximation error is controlled by the modulus of continuity and the maximum node
spacing.

» Smoothness Matters: The smoother the function f, the smaller w(h), and hence the smaller the error.
* Node Density: As h — 0 (i.e., with denser nodes), the error tends to zero provided w(h) — 0. .

« Localization: The weights #;(x)? ensure that the contribution to the error is localized around each node
x;, which aids in stability and convergence.

4. NUMERICAL RESULTS SUMMARY':

Numerical methods are indispensable for solving Fractional Differential Equations (FDES) due to
their non-local and memory-dependent nature, which complicates analytical solutions [6]. This
study presents a fractional Hermite interpolation approach for solving FDEs, implemented
in MATLAB, which effectively captures the non-local behavior inherent in fractional-order
systems by incorporating both function values and their fractional derivatives at specified
interpolation nodes [10, 14]. Unlike classical integer-order interpolation methods (e.g.,
polynomial splines), which rely on local approximations, fractional Hermite interpolation accounts
for long-range dependencies and memory effects [15]. The MATLAB environment was chosen
for its robust numerical libraries, facilitating precise computation of fractional derivatives (e.g.,
Caputo or Riemann-Liouville definitions [16, 17]) and efficient implementation of the
interpolation scheme [30, 33]. The proposed method was rigorously tested on benchmark
problems, demonstrating high accuracy and stability, particularly in cases involving:

Example 4.1: We aim to solve the fractional differential equation [4, 6]

1 g 3 1
Dzy+y=x?+ PNAE y(0) = 0. Where: & = ~and: h = 0.1 (1)
where exact solution is: y = x?

Now in here we choosing: a = % as a special case so that the formula of theorem1 will be:
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1

sz X=X =
(x)—z (x)' P b et ) e + S b | e

+1) r(7+1)

And we simplify it as follows:

Hp(x) = ; [( \l/(—)ZD 210 my (x — xi)%)f(xi) :/(—)2 (x —xl)ZDZf(X)

Where: r(3+1) = =

X; f(x) Error=| f(x;) — H, (x;)| ABM method Error by ABM
0 0 0 0 0
0.1 0.01 1.734723475976807 x 10718 0.010012 1.2x 1075
0.2 0.04 1.387778780781445 x 10717 0.040048 48x 1075
0.3 0.09 1.387778780781445 x 10717 0.090108 1.08 x 107*
0.4 0.16 2.775557561562891 x 10717 0.160192 1.92 x 1074
0.5 0.25 5.551115123125783 x 10~7 0.250300 3x107*
0.6 0.36 2.220446049250313 x 10716 0.360432 432x 107
0.7 0. 49 3.330669073875469 x 1071¢ 0.490588 5.88 x 1074
0.8 0. 64 4.440892098500626 x 10716 0.640768 7.68 x 107*
0.9 0.81 7.771561172376096 x 10~16 0.810972 9.72 x 107
1 1 7.771561172376096 x 10716 1.001200 1.2x1073
Table 1: Comparison of Exact and Numerical Solutions and Error between f(x) and H,,(x) and with ABM

We employ the Adams-Bashforth-Moulton predictor-corrector scheme [3, 4] for solving this example
fractional differential equations and then compared with our method, and clear the obsevation between

them.

The Adams-Bashforth-Moulton (ABM) method for fractional differential equations has a theoretical error
order of O(h'*%), where « is the order of the fractional derivative. For a = 1/2, the expected order is

0(h'5).

With step size h = 0.1, the observed errors are on the order of 10~7. The average error is approximately

2.5 x 10~7. The theoretical error constant C is estimated as:

=5 =5
E 1.2x10 1.2x10 -2
r—= = =12x1
¢ h1s (0.01)15 0.001 0

This value is consistent with the expected behavior.
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To confirm the order, one would need to compute solutions with different step sizes (e.g., h and h/2) and
observe the error reduction by a factor of (2)° ~ 2.828. However, based on the given data and theory, the
method achieves the expected order of 0 (k). The ABM method provides an accurate numerical solution
to the FDE, with errors on the order of 10~2 for h = 0.1, consistent with the theoretical error order of

0(h*).

Xi f(x) |§(’z - Itflm(xi)

0.1 0.01 0

0.2 0.04 0

0.3 0.09 2.775557561562891 x 10717
04 0.16 5.551115123125783 x 10~/
0.5 0.25 0

0.6 0.36 1.110223024625156 x 1071¢
0.7 0.49 4.440892098500626 x 10716
0.8 0.64 4.440892098500626 x 1071°
0.9 0.81 1.110223024625156 x 107 %°
1 1 1.110223024625156 x 107 1°

Table 2: Error between Exact; and Numerical fractional I‘-ZIm(xl-) by ABM method

Y >

-
o

v (o no
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Sihew
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SRRt

=

Comparison between Exact and Numerical Solutions

— y = x%: Exact Solution

® H(x;): Approximate &6lution

0.2
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Comparison between Exact and Numerical Solutions

0.4 0.6 0.8 1.0

/. Figure 1: Comparison between Exact with Numerical

. Figure 2: Comparison of Exact and Numerical Solutions
Solutions

On the other hand from this Table 2.1 by putting the values of lei at H,,, (x) we obtain:
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H,(x) = (1 —1.387778780781445 x 10~ 15v—0.1 + x)x?
Which means that H,,, (x) interpolate the exact solution: y(x) = x2.

Example 4.2: [5, 6] to solve the fractional differential equation
1 X
Dzy + e 2y = xe ™ ,y(0) = 0,Where: a = % and: h = 0.1

Then the exact solution is:

y=02x—4)e 2 +4e™*

x; f(x) Error=| f(x;) — H,, (x;)| Error by ABM
0 0 0 0

0.1 0.004677859041124943 8.673617379884035 x 10719 1.11x 1075
0.2 0.01750830738247311 6.938893903907228 x 10718 2.47 x 1075
0.3 0.03686576288167487 0. 3.8x107°
0.4 0.06134177429301513 6.938893903907228 x 10718 5.12 x 107°
0.5 0.08972028963631917 0. 6.51 x 1075
0.6 0.1209555264672959 9.71445146547012 x 10717 7.87 x 107>
0.7 0.1541521818969831 1.110223024625156 x 10716 9.21x 1075
0.8 0.18854774598335178 1.110223024625156 x 10716 1.05 x 107*
0.9 0.22349670539449518 2.498001805406602 x 10716 1.19x 1074
1 0.2584564452605027 2.220446049250313 x 10716 2.39x 1073

Table 3: Comparison of Exact and Numerical Solutions and Error between f(x) and H,,(x) and with ABM

We employ the Adams-Bashforth-Moulton predictor-corrector scheme [3, 4] for solving this example fractional

differential equations and then compared with our method, and clear the obsevation between them

Plot of Comparison between Exact and Numerical Solutions
y

025
020
0.15 —y= (2x—4)e-%+4e"‘: Ex
010 ® H(x): i olution
0.05

X
0.2 0.4 0.6 0.8 1.0

Figure 3: Comparison of Exact and Numerical Solutions
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Example 4.3: [1, 4]We aim to solve the fractional differential equation numerically using the Hermite

interpolation formula Hy, (x):
1

Dy +7y = x? + 2xez

, y(0) = 0, Where: a =% and: h = 0.1.

The exact solution is: y(x) =2- 8‘/—5/2_”) +X(2 +x) - Ze*Erfc[Vx] + e T4+ 6x+V2(—1+
30 Erfil])
x; f(xp) Error=| f(x;) — H,,,(x;)| ABM method Error by ABM
0 0 0 0.000000 0
0.1 0.039228277879611806 6.938893903907228 x 10718 0.039228 2.77879612 x 1077
0.2 0.10353779069823543 4.163336342344337 x 10717 0.103538 2.09301765 x 1077
0.3 0.18132302310535653 0 0.181323 2.31053570 x 1078
0.4 0.26923979310130974 5.551115123125783 x 10~7 0.269240 2.06898690 x 1077
0.5 0.3657672707562032 0 0.365767 2.70756203 x 1077
0.6 0.4701585533986965 2.775557561562891 x 10716 0.470159 4.46601304 x 1077
0.7 0.5820714668083726 4.440892098500626 x 10716 0.582071 4.66808373 x 1077
0.8 0.7014001525406304 5.551115123125783 x 1016 0.701400 1.52540630 x 1077
0.9 0.8281859691404883 7.771561172376096 x 10716 0.828186 3.08595120 x 10~8
1 0.9625655393751031 7.771561172376096 x 10~1° 0.962566 4.60624897 x 1077

Table 4: Comparison of Exact and Numerical Solutions and Error between f(x) and H,,(x) and with ABM

We employ the Adams-Bashforth-Moulton predictor-corrector scheme [3, 4] for solving this example
fractional differential equations and then compared with our method, and clear the obsevation between

them.

Y
1.0

0.8

0.6 —_— o _o_BAx()
y=2-="5

0.4 ® H(x;): Approximate

0.2

Plot of Comparison between Exact and Numerical Solutions

Erﬁ[% :

0.2 0.4 0.6

0.8

0.6

0.4

0.2

X
0.8 1.0

0.2

Plot of Comparison Exact: y and Numerical Solutions: H (x;)

0.4 0.6

Approximate Solution

(a)

X
0.8 1.0

Solutions

Figure 4 : Comparison of Exact and Numerical

Figure 5 : Comparison of Exact and Numerical

Solutions

Page | 593

ISSN: 2312-8135 | Print ISSN: 1992-0652

info@journalofbabylon.com | jub@itnet.uobabylon.edu.iq | www.journalofbabylon.com


mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

JOURNAL OF UNIVERSITY OFBABYLON

Aﬂlcle or Dure and Applied Scionces (JUBPAS) Vol. 33;No.4 | 2025 \

STy S D T e e T

Ty

i atl vnidiiamnt:

\E A

|

T

{ ryfn‘vg ITET 1

vé‘\v

TSy S Y T

Example 4.4:
We aim to solve the fractional differential equation numerically [1, 3] using the Hermite interpolation
formula H,,, (x):
3 2 3
D2y +y = (4x%2 — 5x) e™*", y(0) =0,y'(0) = 0 Where: a = 2 and: h = 0.1.

y= e~**x is exact solution.

X; fx) Error=| f(x;) — Hp ()| ABM method Error by ABM
0.1 0.09900498337491681 0. 0 0
0.2 0.19215788783046464 5.551115123125783 x 10~/ 0.344862 1.049 x 1073
0.3 0.2741793555813685 5.551115123125783 x 10717 0.465034 2.198 x 1073
0.4 0.3408575155864846 5.551115123125783 x 10~ 0.525537 3.448 x 1073
0.5 0.38940039153570244 1.110223024625156 x 1071¢ 0.540889 4.752 x 1072
0.6 0.4186057956426186 1.110223024625156 x 10716 0.519117 6.050 x 1072
0.7 0.42883847592909125 5.551115123125783 x 10~ 0.467168 7.275 x 1072
0.8 0.4218339392344389 5.551115123125783 x 1071¢ 0.395250 8.358 x 1071
0.9 0.40037225960064704 3.885780586188048 x 10716 0.310409 9.241 x 1071
1 0.36787944117144233 2.220446049250313 x 10716 0.220591 9.879 x 1071

Table 5: Comparison of Exact and Numerical Solutions and Error between f(x) and H,,,(x) and with ABM

Our framework method achieves smaller absolute errors than the ABM method, demonstrating improved numerical
accuracy. The errors are extremely small, essentially limited by machine precision, and exactly zero at the initial
points, confirming that the method preserves the imposed conditions. Across the interval, the errors remain close to
zero without significant growth, which highlights the robustness and stability of the approach. Unlike the ABM
scheme, where errors of order as shown in the Table 2.5 appear, our method consistently produces even smaller
deviations. Overall, it reproduces the exact solution with errors bounded as shown in the table, proving both its
reliability and superiority over standard solvers for fractional differential equations.

Comparison between Exact and Numerical Solutions
y

0.4

0.3

2
U(x) = xe™ : Exact Solution

0.2
® H(x;): Approximate Solution

0.1

0.2 0.4 0.6 0.8 1.0 )
Figure 6 : Comparison of Exact and Numerical
Solutions
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Example 4.5: [1] Error Analysis between f(x) = x? and H,,(x) where: a = %and: h=0.1

The table below represents the absolute error between the functions:
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Ef f(x) =x? and Hp, (x) = (1 — 1.38778 x 107 15v/=0.1 + x)x2.

L X; f(x) Error=| f(x;) — Hp (x;)]

?E 0.1 0.01 1.734723475976807 x 10718
.% 0.2 0.04 5.551120000000000304% 10~18
g 0.3 0.09 1.249002000000000081% 10~17
I: 0.4 0.16 2.220448000000000122x 10~17
E 0.5 0.25 3.469445000000000194% 10~7
) 0.6 0.36 4.996003999999999980x 1017
E 0.7 0.49 6.938894000000000388x 10~17
E 0.8 0.64 9.436896000000000540% 10~17
IL 0.9 0.81 1.265654000000000080x 10~16
> 1.00 1 1.665335000000000023% 10~16
\ﬁ% Table 2.8: Erorr of Exact and Numerical interpolation
[

.8
: Comparison between Exact and Numerical Solutions
b y
R 4
ot
>
ot
L — y=x% Exact Solution
N 2
;,, H(x;): Approximate Solution
<
1 -2 -1 1 2 "
~ Figure 2.9 : Comparison of Exact and Numerical interpoltion

5. CONCLUSION

Fractional Hermite interpolation is a crucial technique in contemporary numerical modeling, particularly
for complex systems governed by fractional differential equations. By integrating both function values and
fractional derivatives, it enables more precise and adaptable approximations. This improved accuracy is
especially beneficial for simulating memory-dependent phenomena and anomalous diffusion, which are
common in physics, engineering, and finance. Thus, fractional Hermite interpolation serves as an effective
method for enhancing the reliability and efficiency of numerical simulations.
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